Project description:Previous studies have demonstrated low rates of seroconversion to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA) vaccines in patients with chronic lymphocytic leukemia (CLL). In this national collaboration of 11 cancer centers in the United States, we aimed to further characterize and understand vaccine-induced immune responses, including T-cell responses, and the impact of CLL therapeutics (#NCT04852822). Eligible patients were enrolled in 2 cohorts (1) at the time of initial vaccination and (2) at the time of booster vaccination. The serologic response rates (anti-S) from 210 patients in the initial vaccination cohort and 117 in the booster vaccination cohort were 56% (95% confidence interval [CI], 50-63) and 68% (95% CI, 60-77), respectively. Compared with patients not on therapy, those receiving B-cell-directed therapy were less likely to seroconvert (odds ratio [OR], 0.27; 95% CI, 0.15-0.49). Persistence of response was observed at 6 months; anti-S titers increased with the administration of booster vaccinations. In the initial vaccination cohort, positive correlations were observed between the quantitative serologic response and CD4 T-cell response for the Wuhan variant and, to a lesser degree, for the Omicron variant (Spearman P = 0.45 Wuhan; P = 0.25 Omicron). In the booster vaccination cohort, positive correlations were observed between serologic responses and CD4 T-cell responses for both variants (P = 0.58 Wuhan; P = 0.57 Omicron) and to a lesser degree for CD8 T-cell responses (P = 0.33 Wuhan; P = 0.22 Omicron). Although no deaths from coronavirus disease 2019 (COVID-19) have been reported after booster vaccinations, patients should use caution as newer variants emerge and escape vaccine-induced immunity. This trial was registered at www.clinicaltrials.gov as #NCT04852822.
Project description:Chronic lymphocytic leukemia (CLL), the most common leukemia worldwide, is associated with increased COVID-19 mortality. Previous studies suggest only a portion of vaccinated CLL patients develop severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike antibodies. Whether the elicited antibodies are functional and/or accompanied by functional T-cell responses is unknown. This prospective cohort study included patients with CLL who received SARS-CoV-2 and PCV13 vaccines (not concurrently). The primary cohort included adults with CLL off therapy. Coprimary outcomes were serologic response to SARS-CoV-2 (receptor binding domain [RBD] immunoassay) and PCV13 vaccines (23-serotype IgG assay). Characterization of SARS-CoV-2 antibodies and their functional activity and assessment of functional T-cell responses was performed. Sixty percent (18/30) of patients demonstrated serologic responses to SARS-CoV-2 vaccination, appearing more frequent among treatment-naïve patients (72%). Among treatment-naïve patients, an absolute lymphocyte count ≤24 000/µL was associated with serologic response (94% vs 14%; P < .001). On interferon-γ release assays, 80% (16/20) of patients had functional spike-specific T-cell responses, including 78% (7/9) with a negative RBD immunoassay, a group enriched for prior B-cell-depleting therapies. A bead-based multiplex immunoassay identified antibodies against wild-type and variant SARS-CoV-2 (α, β, γ, and δ) in all tested patients and confirmed Fc-receptor binding and effector functions of these antibodies. Of 11 patients with negative RBD immunoassay after vaccination, 6 (55%) responded to an additional mRNA-based vaccine dose. The PCV13 serologic response rate was 29% (8/28). Our data demonstrate that SARS-CoV-2 vaccination induces functional T-cell and antibody responses in patients with CLL and provides the framework for investigating the molecular mechanisms and clinical benefit of these responses. This trial was registered at www.clinicaltrials.gov as #NCT05007860.
Project description:The cellular origin of chronic lymphocytic leukemia (CLL) is still debated, although this information is critical to understanding its pathogenesis. Transcriptome analyses of CLL and the main normal B cell subsets from human blood and spleen revealed that immunoglobulin variable region (IgV) gene unmutated CLL derives from unmutated mature CD5(+) B cells and mutated CLL derives from a distinct, previously unrecognized CD5(+)CD27(+) post-germinal center B cell subset. Stereotyped V gene rearrangements are enriched among CD5(+) B cells, providing independent evidence for a CD5(+) B cell derivation of CLL. Notably, these CD5(+) B cell populations include oligoclonal expansions already found in young healthy adults, putatively representing an early phase in CLL development before the CLL precursor lesion monoclonal B cell lymphocytosis. Finally, we identified deregulated proteins, including EBF1 and KLF transcription factors, that were not detected in previous comparisons of CLL and conventional B cells.
Project description:Chromosomal abnormalities, immunoglobulin heavy chain variable-region (IGHV) gene mutation status, and zeta-associated protein 70 (ZAP-70) expression levels have independent prognostic relevance in chronic lymphocytic leukemia (CLL); however, their concordance is variable. Because deregulation of microRNAs has been linked to disease initiation and progression in CLL, we studied the value of the microRNAs as a signature for CLL patients with specific chromosomal abnormalities. We identified 32 microRNAs able to discriminate the 11q deletion, 17p deletion, trisomy 12, 13q deletion, and normal karyotype cytogenetic subgroups. The expression values of 9 among the 32 microRNAs (miR-151-3p, miR-34a, miR-29c, miR-29b, miR-155, miR-148a, miR-146a, miR-146b5p, and miR-640) were correlated with gene expression data from the same samples to assess their biologic impact on CLL. In this study we also found that IGHV unmutated, high expression of ZAP-70 protein, and low expression of the miR-223, miR-29c, miR-29b, and miR-181 family were strongly associated with disease progression in CLL cases harboring 17p deletion, whereas in those harboring trisomy 12 only high expression of the miR-181a, among the analyzed parameters, suggested more aggressive disease. Thus, the use of the microRNA-based classifications may yield clinically useful biomarkers of tumor behavior in CLL.
Project description:Chronic lymphocytic leukemia (CLL) is characterized by progressive hypogammaglobulinemia predisposing affected patients to a variety of infectious diseases but paradoxically not to cytomegalovirus (CMV) disease. Moreover, we found reactivity of a panel of CLL recombinant antibodies (CLL-rAbs) encoded by a germ-line allele with a single CMV protein, pUL32, despite differing antibody binding motifs. To put these findings into perspective, we studied prospectively relative frequency of viremia, kinetics of total and virus-specific IgG over time, and UL32 genetic variation in a cohort of therapy-naive patients (n=200). CMV-DNA was detected in 3% (6/200) of patients. The decay of total IgG was uniform (mean, 0.03; SD, 0.03) and correlated with that of IgG subclasses 1-4 in the paired samples available (n=64; p<0.001). Total CMV-specific IgG kinetics were more variable (mean, 0,02; SD, 0,06) and mean decay values differed significantly from those of total IgG (p=0.034). Boosts of CMV-specific antibody levels were observed in 49% (22/45) of CMV-seropositive patients. In contrast, VZV- and EBV-specific IgG levels decayed in parallel with total IgG levels (p=0.003 and p=0.001, respectively). VZV-specific IgG even became undetectable in 18% (9/50) of patients whereas CMV-specific ones remained detectable in all seropositive patients. The observed CMV-specific IgG kinetics were predicated upon the highly divergent kinetics of IgG specific for individual antigens - glycoprotein B-specific IgG were boosted in 51% and pUL32-specific IgG in 32% of patients. In conclusion, CLL patients have a preserved CMV-specific antibody response despite progressive decay of total IgG and IgG subclasses. CMV-specific IgG levels are frequently boosted in contrast to that of other herpesviruses indicative of a higher rate of CMV reactivation and antigen-presentation. In contrast to the reactivity of multiple different CLL-rAbs with pUL32, boosts of humoral immunity are triggered apparently by other CMV antigens than pUL32, like glycoprotein B.
Project description:Humoral vaccine responses are known to be suboptimal in patients receiving B-cell targeted therapy, and little is known about vaccine induced T-cell immunity in these patients. In this study, we characterized humoral and cellular antigen-specific anti-SARS-CoV2 responses following COVID-19 vaccination in patients with ANCA-associated vasculitis (AAV) receiving anti-CD20 therapy, who were either B-cell depleted, or B-cell recovered at the time of vaccination and in normal control subjects. SARS-CoV-2 anti-spike (S) and anti-nucleocapsid (NC) antibodies were measured using electrochemiluminescence immunoassays, while SARS-CoV-2 specific T-cell responses to S glycoprotein subunits 1 (S1) and 2 (S2) and receptor binding domain peptide pools were measured using interferon-gamma enzyme-linked immunosorbent spot (ELISPOT) assays. In total, 26 recently vaccinated subjects were studied. Despite the lack of a measurable humoral immune response, B-cell depleted patients mounted a similar vaccine induced antigen-specific T-cell response compared to B-cell recovered patients and normal controls. Our data indicate that to assure a humoral response in patients receiving anti-CD20 therapy, SARS-CoV-2 vaccination should ideally be delayed until B-cell recovery (CD-20 positive B-cells > 10/μl). Nevertheless, SARS-CoV-2 vaccination elicits robust, potentially protective cellular immune responses in these subjects. Further research to characterize the durability and protective effect of vaccine-induced anti-SARS-CoV-2 specific T-cell immunity are needed.