Comparative Peptidomics Analysis of Fermented Milk by Lactobacillus delbrueckii ssp. bulgaricus and Lactobacillus delbrueckii ssp. lactis.
Ontology highlight
ABSTRACT: Few studies have investigated the peptidomics of fermented milk by Lactobacillus delbrueckii. The aim of the present study was to interpret the peptidomic pattern of the fermented milk by five strains of L. delbrueckii ssp. bulgaricus and ssp. lactis prior to and after the simulated gastrointestinal digestion in vitro. The results indicated variations in the peptidomics among the samples, particularly between the samples of different subspecies. The peptides originating from β-casein were abundant in the samples of ssp. bulgaricus, whereas the peptides derived from αs1-casein and αs2-casein were more likely to dominate in those of ssp. lactis. For β-casein, the strains of ssp. bulgaricus displayed extensive hydrolysis in the regions of (73-97), (100-120), and (130-209), whereas ssp. lactis mainly focused on (160-209). The digestion appears to reduce the variations of the peptidomics profile in general. Among the five strains, L. delbrueckii ssp. bulgaricus DQHXNS8L6 was the most efficient in the generation of bioactive peptides prior to and after digestion. This research provided an approach for evaluating the peptide profile of the strains during fermentation and digestion.
Project description:BACKGROUND: Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus are lactic acid producing bacteria that are largely used in dairy industries, notably in cheese-making and yogurt production. An earlier in-depth study of the first completely sequenced ssp. bulgaricus genome revealed the characteristics of a genome in an active phase of rapid evolution, in what appears to be an adaptation to the milk environment. Here we examine for the first time if the same conclusions apply to the ssp. lactis, and discuss intra- and inter-subspecies genomic diversity in the context of evolutionary adaptation. RESULTS: Both L. delbrueckii ssp. show the signs of reductive evolution through the elimination of superfluous genes, thereby limiting their carbohydrate metabolic capacities and amino acid biosynthesis potential. In the ssp. lactis this reductive evolution has gone less far than in the ssp. bulgaricus. Consequently, the ssp. lactis retained more extended carbohydrate metabolizing capabilities than the ssp. bulgaricus but, due to high intra-subspecies diversity, very few carbohydrate substrates, if any, allow a reliable distinction of the two ssp. We further show that one of the most important traits, lactose fermentation, of one of the economically most important dairy bacteria, L. delbruecki ssp. bulgaricus, relies on horizontally acquired rather than deep ancestral genes. In this sense this bacterium may thus be regarded as a natural GMO avant la lettre. CONCLUSIONS: The dairy lactic acid producing bacteria L. delbrueckii ssp. lactis and ssp. bulgaricus appear to represent different points on the same evolutionary track of adaptation to the milk environment through the loss of superfluous functions and the acquisition of functions that allow an optimized utilization of milk resources, where the ssp. bulgaricus has progressed further away from the common ancestor.
Project description:Lactobacillus helveticus is one of the commonly used starter cultures for manufacturing various fermented dairy products. However, only a few studies have explored the cleavage region preference of L. helveticus with different cell envelope proteinase (CEP) genes. In the present study, we profiled the peptide composition of milk samples fermented by three different L. helveticus strains by means of peptidomics to illustrate their different proteolysis patterns. The result revealed that the differences in peptide profiles of milk samples fermented by different L. helveticus strains were mainly a result of variations in the peptide patterns of the casein fractions, which were correlated with CEP genotypes. This was mainly reflected in the extensiveness of the hydrolysis region of αS1-casein and the degree of β-casein hydrolysis. Bioactive peptides were mostly derived from the hydrolysis region common to the three L. helveticus strains, and DQHXN-Q32M42 fermentation resulted in the highest diversity and abundance of bioactive peptides and a significant antihypertensive effect in spontaneous hypertension rats.
Project description:Lactobacillus delbrueckii subsp. bulgaricus is one of the predominant lactic acid bacterial species used as starter cultures in industrial fermented dairy manufacturing, as it strongly affects the quality of the products. Volatile flavor compound profiles and fermentation characteristics are considered to be the most important indicators for starter culture screening. In the present study, volatile compounds in milk fermented by 17 test strains of L. delbrueckii subsp. bulgaricus and a commercial strain used as a control were identified using solid-phase microextraction (SPME) methods coupled with gas chromatography mass spectrometry (GC-MS). In total, 86 volatile flavor compounds were identified in the fermented milk upon completion of fermentation, including 17 carboxylic acids, 14 aldehydes, 13 ketones, 29 alcohols, 8 esters, and 5 aromatic hydrocarbon compounds. Various volatile flavor compounds (acetaldehyde, 3-methyl-butanal, (E)-2-pentenal, hexanal, (E)-2-octenal, nonanal, 2,3-butanedione, acetoin, 2-heptanone, 2-non-anone, formic acid ethenyl ester) were identified due to their higher odor activity values (>1). In addition, of the 17 test strains of L. delbrueckii subsp. bulgaricus, IMAU20312 (B14) and IMAU62081 (B16) strains exhibited good fermentation characteristics in milk compared with the control strain. The combination of the volatile flavor compound profile and fermentation characteristics in this work could be useful when selecting lactic acid bacteria that may serve as important resources in the development of novel fermented milk products.
Project description:The aroma of the fermented milk produced by twenty-eight Lactobacillus delbrueckii subsp. bulgaricus strains was evaluated via quantitative descriptive analysis. According to the sensory analysis results, the fermented milks were grouped into milky-type, cheesy-type, fermented-type and miscellaneous-type. The representative samples of cheese-type and fermented-type were analyzed by headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and flavoromics. A total of 95 volatile compounds were identified and particularly, 12 aroma-active compounds were detected by using gas chromatography-olfactometry-mass spectrometry (GC-O-MS). Among the different aroma types, 2,3-butanedione, δ-decalactone, acetaldehyde, butanoic acid, acetic acid and hexanoic acid were finally screened out as the key aroma-active compounds by quantitative and odor activity value (OAV) analysis combined with aroma recombination, omission and addition experiments. These findings were valuable in developing specific fermented milk products with different aroma profiles.
Project description:We describe, for the first time, a detailed electroporation procedure for Lactobacillus delbrueckii. Three L. delbrueckii strains were successfully transformed. Under optimal conditions, the transformation efficiency was 10(4) transformants per microg of DNA. Using this procedure, we identified several plasmids able to replicate in L. delbrueckii and integrated an integrative vector based on phage integrative elements into the L. delbrueckii subsp. bulgaricus chromosome. These vectors provide a good basis for developing molecular tools for L. delbrueckii and open the field of genetic studies in L. delbrueckii.
Project description:We identified the proteins synthesized by Lactobacillus delbrueckii ssp. bulgaricus strain LBB.B5 in laboratory culture medium (MRS) at 37 �C and in milk at 37 and 4 �C. Cell-associated proteins were measured by gel-free, shotgun proteomics using high-performance liquid chromatography coupled with tandem mass spectrophotometry. A total of 635 proteins were recovered from all cultures, and among which 72 proteins were unique to or significantly more abundant in L. bulgaricus after growth in milk compared to MRS at 37 �C.
Project description:Two PCR-based methods, specific PCR and randomly amplified polymorphic DNA PCR (RAPD-PCR), were used for rapid and reliable differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. PCR with a single combination of primers which targeted the proline iminopeptidase (pepIP) gene of L. delbrueckii subsp. bulgaricus allowed amplification of genomic fragments specific for the two subspecies when either DNA from a single colony or cells extracted from dairy products were used. A numerical analysis of the RAPD-PCR patterns obtained with primer M13 gave results that were consistent with the results of specific PCR for all strains except L. delbrueckii subsp. delbrueckii LMG 6412(T), which clustered with L. delbrueckii subsp. lactis strains. In addition, RAPD-PCR performed with primer 1254 provided highly polymorphic profiles and thus was superior for distinguishing individual L. delbrueckii strains.
Project description:The article presents a proteomic dataset generated by a comparative analysis, using gel-free nanoLC-MS/MS, of the cellular proteome of Lactobacillus delbrueckii subsp. bulgaricus, a yogurt starter, when cultivated in soy milk versus in cow milk. The CIRM-BIA1592 strain was cultivated in the aqueous phase of soy milk, or of cow milk. Whole-cell proteins were extracted, trypsinolyzed and analyzed by nano LC-MS/MS, prior to identification and to classification by function using the X!Tandem pipeline software and the proteomic data from NCBI.nlm.nigh.gov. Quantification of the proteins was moreover performed to evidence changes in their expression, depending on the culture medium. Data are available via ProteomeXchange with the identifier PXD033905 (http://www.proteomexchange.org/). This article is related to the research article entitled "The stressing life of Lactobacillus delbrueckii subsp. bulgaricus in soy milk", by G.Jan et al. in Food Microbiology, 2022. This proteomic differential analysis indeed revealed major modulation of the stress proteome, with many stress proteins upregulated in the soy environment.
Project description:Lactobacillus delbrueckii subsp. bulgaricus is one of the most widely used starter culture strains in industrial fermented dairy manufacture. It is also common in naturally fermented dairy foods made using traditional methods. The subsp. bulgaricus strains found in naturally fermented foods may be useful for improving current industrial starter cultures; however, little is known regarding its genetic diversity and population structure. Here, a collection of 298 L. delbrueckii strains from naturally fermented products in Mongolia, Russia, and West China was analyzed by multi-locus sequence typing based on eight conserved genes. The 251 confirmed subsp. bulgaricus strains produced 106 unique sequence types, the majority of which were assigned to five clonal complexes (CCs). The geographical distribution of CCs was uneven, with CC1 dominated by Mongolian and Russian isolates, and CC2-CC5 isolates exclusively from Xinjiang, China. Population structure analysis suggested six lineages, L1-L6, with various homologous recombination rates. Although L2-L5 were mainly restricted within specific regions, strains belonging to L1 and L6 were observed in diverse regions, suggesting historical transmission events. These results greatly enhance our knowledge of the population diversity of subsp. bulgaricus strains, and suggest that strains from CC1 and L4 may be useful as starter strains in industrial fermentation.
Project description:Streptococcus thermophilus is an important lactic starter used in the production of yogurt. Most strains of S. thermophilus are galactose negative (Gal(-)) and are able to metabolize only glucose portion of lactose and expel galactose into the medium. This metabolic defect leads to the accumulation of free galactose in yogurt, resulting in galactosemia among consumers. Hence there is an absolute need to develop low galactose yogurt. Therefore, in this study, three galactose positive (Gal(+)) S. thermophilus strains from National Collection of Dairy Cultures (NCDC) viz. NCDC 659 (AJM), NCDC 660 (JM1), NCDC 661 (KM3) and a reference galactose negative (Gal(-)) S. thermophilus NCDC 218 were used for preparation of low galactose yogurt. In milk fermented using S. thermophilus isolates alone, NCDC 659 released less galactose (0.27 %) followed by NCDC 661 (0.3 %) and NCDC 660 (0.45 %) after 10 h at 42 °C. Milk was fermented in combination with Gal(-) L. delbrueckii subsp. bulgaricus NCDC 04, in which NCDC 659 released least galactose upto 0.49 % followed by NCDC 661 (0.51 %) and NCDC 660 (0.60 %) than reference Gal(-) NCDC 218(0.79 %). Low galactose yogurt was prepared following standard procedure using Gal(+) S. thermophilus isolates and Gal(-) L. delbrueckii subsp. bulgaricus NCDC 04 in 1:1 ratio. Among which low galactose yogurt by NCDC 659 combination contained less galactose 0.37 % followed by NCDC 661 (0.51 %), NCDC 660 (0.65 %) and reference Gal(-) NCDC 218 (0.98 %) after 4 h of fermentation. This study clearly reveals that Gal(+) S. thermophilus isolates can be paired with Gal(-) L. delbrueckii subsp. bulgaricus for developing low galactose yogurt.