Unknown

Dataset Information

0

Next-Generation Sequencing for Pathogen Identification in Infected Foot Ulcers.


ABSTRACT:

Background

Accurate identification of primary pathogens in foot infections remains challenging due to the diverse microbiome. Conventional culture may show false-positive or false-negative growth, leading to ineffective postoperative antibiotic treatment. Next-generation sequencing (NGS) has been explored as an alternative to standard culture in orthopedic infections. NGS is highly sensitive and can detect an entire bacterial genome along with genes conferring antibiotic resistance in a given sample. We investigated the potential use of NGS for accurate identification and quantification of microbes in infected diabetic foot ulcer (DFU). We hypothesize that NGS will aid identification of dominant pathogen and provide a more complete profile of microorganisms in infected DFUs compared to the standard culture method.

Methods

Data were prospectively collected from 30 infected DFU patients who underwent operative treatment by a fellowship-trained orthopedic foot and ankle surgeon from October 2018 to September 2019. The average age of the patient was 60.4 years. Operative procedures performed were irrigation and debridement (12), toe or ray amputation (13), calcanectomies (4), and below-the-knee amputation (1). Infected bone specimens were obtained intraoperatively and processed for standard culture and NGS. Concordance between the standard culture and NGS was assessed.

Results

In 29 of 30 patients, pathogens were identified by both NGS and culture, with a concordance rate of 70%. In standard culture, Staphylococcus aureus (58.6%) was the most common pathogen, followed by coagulase-negative Staphylococcus (24.1%), Corynebacterium striatum (17.2%), and Enterococcus faecalis (17.2%). In NGS, Finegoldia magna (44.8%) was the most common microorganism followed by S. aureus (41.4%), and Anaerococcus vaginalis (24.1%). On average, NGS revealed 5.1 (range, 1-11) pathogens in a given sample, whereas culture revealed 2.6 (range, 1-6) pathogens.

Conclusion

NGS is an emerging molecular diagnostic method of microbial identification in orthopedic infection. It frequently provides different profiles of microorganisms along with antibiotic-resistant gene information compared to conventional culture in polymicrobial foot infection. Clinical use of NGS for management of foot and ankle infections warrants further investigation.

Level of evidence

Level II, diagnostic study.

SUBMITTER: Choi Y 

PROVIDER: S-EPMC8702686 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC5514496 | biostudies-literature
| S-EPMC9020267 | biostudies-literature
| S-EPMC6129269 | biostudies-literature
| S-EPMC8667110 | biostudies-literature
| S-EPMC8655164 | biostudies-literature
2017-04-03 | PXD003804 | Pride
| S-EPMC4079973 | biostudies-literature
| S-EPMC4339746 | biostudies-literature
| S-EPMC7539889 | biostudies-literature
| S-EPMC8987016 | biostudies-literature