ABSTRACT: The cage rearing model of the modern poultry industry makes the bones of birds more vulnerable to deterioration. In this study, at 8 wk of age, a total of 60 birds were randomly allocated to 2 groups, including the floor rearing group (FRD) and cage rearing group (CRD), and their body weight was measured every 2 wk. At the age of 20 wk, the tibia, femur, and humerus were collected from each group (n = 12) to determine the bone quality parameters such as weight, size, bone mineral density (BMD), breaking strength, cortical thickness, and area, ash content, calcium (Ca) content, and phosphorus (P) content. Meanwhile, the serum metabolome composition of both groups was detected by untargeted metabolome technology. The results showed that there were no significant differences in body weight, bone weight, and size between the 2 groups (P > 0.05), but the humerus mineral density and the breaking strength, cortical bone thickness, cortical bone area percentage of tibia, femur, and humerus of CRD was significantly lower than those of FRD (P < 0.05), indicating that the cage rearing system caused the deterioration of bone quality. Based on nontarget metabolomics, 49 metabolites were correlated with bone quality parameters, and 10 key metabolites were strongly correlated, including erucic acid, citric acid, and ketoleucine. In addition, the KEGG analysis showed that the caged system mainly perturbed amino acid metabolism, lipid metabolism, and energy metabolism, which led to changes in related metabolite levels, produced ROS, and altering energy supply, thus leading to a deterioration of bone quality of cage rearing ducks. Therefore, our findings were helpful to further understand the potential mechanism of the deterioration of duck bone quality in cage rearing system, provided a theoretical basis for reducing the occurrence of poultry osteoporosis, and ensuring the healthy development of poultry breeding.