Unknown

Dataset Information

0

Inhibiting Dendrite Growth via Regulating the Electrified Interface for Fast-Charging Lithium Metal Anode.


ABSTRACT: Extreme fast charging (XFC), with a recharging time of 15 min, is the key to the mainstream adoption of battery electric vehicles. Lithium metal, in the meantime, has re-emerged as the ultimate anode because of its ultrahigh specific capacity and low electrochemical potential. However, the low lithium-ion concentration near the lithium electrode surface can result in uncontrolled dendrite growth aggravated by high plating current densities. Here, we reveal the beneficial effects of an adaptively enhanced internal electric field in a constant voltage charging mode in XFC via a molecular understanding of the electrolyte-electrode interfaces. With the same charging time and capacity, the increased electric field stress in dozens of millivolts, compared with that in a constant current mode, can facilitate Li+ migrating toward the negatively charged lithium electrode, mitigating Li+ depletion at the interface and thereby suppressing dendrites. In addition, more NO3 - ions are involved in the solvation sheath that is constructed on the lithium electrode surface, leading to the nitride-enriched solid electrolyte interphase and thus favoring lower barriers for Li+ transport. On the basis of these merits, the Li||Li4Ti5O12 battery runs steadily for 550 cycles with charging current peaks up to 27 mA cm-2, and the Li||S full cells exhibit extended life-spans charged within 12 min.

SUBMITTER: Wang X 

PROVIDER: S-EPMC8704041 | biostudies-literature | 2021 Dec

REPOSITORIES: biostudies-literature

altmetric image

Publications

Inhibiting Dendrite Growth via Regulating the Electrified Interface for Fast-Charging Lithium Metal Anode.

Wang Xinyang X   Chen Ming M   Li Siyuan S   Zhao Chang C   Zhang Weidong W   Shen Zeyu Z   He Yi Y   Feng Guang G   Lu Yingying Y  

ACS central science 20211111 12


Extreme fast charging (XFC), with a recharging time of 15 min, is the key to the mainstream adoption of battery electric vehicles. Lithium metal, in the meantime, has re-emerged as the ultimate anode because of its ultrahigh specific capacity and low electrochemical potential. However, the low lithium-ion concentration near the lithium electrode surface can result in uncontrolled dendrite growth aggravated by high plating current densities. Here, we reveal the beneficial effects of an adaptively  ...[more]

Similar Datasets

| S-EPMC10516836 | biostudies-literature
| S-EPMC4802050 | biostudies-literature
| S-EPMC9845508 | biostudies-literature
| S-EPMC9700540 | biostudies-literature
| S-EPMC10695911 | biostudies-literature
| S-EPMC5834003 | biostudies-literature
| S-EPMC11728059 | biostudies-literature
| S-EPMC9968319 | biostudies-literature
| S-EPMC10907015 | biostudies-literature
| S-EPMC10157655 | biostudies-literature