Project description:Olive quick decline syndrome (OQDS) is a disorder associated with bacterial infections caused by Xylella fastidiosa subsp. pauca ST53 in olive trees. Metabolic profile changes occurring in infected olive trees are still poorly investigated, but have the potential to unravel reliable biomarkers to be exploited for early diagnosis of infections. In this study, an untargeted metabolomic method using high-performance liquid chromatography coupled to quadrupole-time-of-flight high-resolution mass spectrometry (HPLC-ESI-Q-TOF-MS) was used to detect differences in samples (leaves) from healthy (Ctrl) and infected (Xf) olive trees. Both unsupervised and supervised data analysis clearly differentiated the groups. Different metabolites have been identified as potential specific biomarkers, and their characterization strongly suggests that metabolism of flavonoids and long-chain fatty acids is perturbed in Xf samples. In particular, a decrease in the defence capabilities of the host after Xf infection is proposed because of a significant dysregulation of some metabolites belonging to flavonoid family. Moreover, oleic acid is confirmed as a putative diffusible signal factor (DSF). This study provides new insights into the host-pathogen interactions and confirms LC-HRMS-based metabolomics as a powerful approach for disease-associated biomarkers discovery in plants.
Project description:The rapidly increasing number of engineered nanoparticles (NPs), and products containing NPs, raises concerns for human exposure and safety. With this increasing, and ever changing, catalogue of NPs it is becoming more difficult to adequately assess the toxic potential of new materials in a timely fashion. It is therefore important to develop methods which can provide high-throughput screening of biological responses. The use of omics technologies, including metabolomics, can play a vital role in this process by providing relatively fast, comprehensive, and cost-effective assessment of cellular responses. These techniques thus provide the opportunity to identify specific toxicity pathways and to generate hypotheses on how to reduce or abolish toxicity.We have used untargeted metabolome analysis to determine differentially expressed metabolites in human lung epithelial cells (A549) exposed to copper oxide nanoparticles (CuO NPs). Toxicity hypotheses were then generated based on the affected pathways, and critically tested using more conventional biochemical and cellular assays. CuO NPs induced regulation of metabolites involved in oxidative stress, hypertonic stress, and apoptosis. The involvement of oxidative stress was clarified more easily than apoptosis, which involved control experiments to confirm specific metabolites that could be used as standard markers for apoptosis; based on this we tentatively propose methylnicotinamide as a generic metabolic marker for apoptosis.Our findings are well aligned with the current literature on CuO NP toxicity. We thus believe that untargeted metabolomics profiling is a suitable tool for NP toxicity screening and hypothesis generation.
Project description:90% of esophageal cancer are esophageal squamous cell carcinoma (ESCC) and ESCC has a very poor prognosis and high mortality. Nevertheless, the key metabolic pathways associated with ESCC progression haven't been revealed yet. Metabolomics has become a new platform for biomarker discovery over recent years. We aim to elucidate dominantly metabolic pathway in all ESCC tumor/node/metastasis (TNM) stages and adjacent cancerous tissues. We collected 60 postoperative esophageal tissues and 15 normal tissues adjacent to the tumor, then performed Liquid Chromatography with tandem mass spectrometry (LC-MS/MS) analyses. The metabolites data was analyzed with metabolites differential and correlational expression heatmap according to stage I vs. con., stage I vs. stage II, stage II vs. stage III, and stage III vs. stage IV respectively. Metabolic pathways were acquired by Kyoto Encyclopedia of Genes and Genomes. (KEGG) pathway database. The metabolic pathway related genes were obtained via Gene Set Enrichment Analysis (GSEA). mRNA expression of ESCC metabolic pathway genes was detected by two public datasets: gene expression data series (GSE)23400 and The Cancer Genome Atlas (TCGA). Receiver operating characteristic curve (ROC) analysis is applied to metabolic pathway genes. 712 metabolites were identified in total. Glycerophospholipid metabolism was significantly distinct in ESCC progression. 16 genes of 77 genes of glycerophospholipid metabolism mRNA expression has differential significance between ESCC and normal controls. Phosphatidylserine synthase 1 (PTDSS1) and Lysophosphatidylcholine Acyltransferase1 (LPCAT1) had a good diagnostic value with Area under the ROC Curve (AUC) > 0.9 using ROC analysis. In this study, we identified glycerophospholipid metabolism was associated with the ESCC tumorigenesis and progression. Glycerophospholipid metabolism could be a potential therapeutic target of ESCC progression.
Project description:BACKGROUND:Second generation antipsychotic (SGA) use in bipolar disorder is common and has proven effective in short-term trials. There continues to be a lack of understanding of the mechanisms underlying many of their positive and negative effects in bipolar disorder. This study aimed to describe the metabolite profiles of bipolar subjects treated with SGAs by comparing to metabolite profiles of bipolar subjects treated with lithium, and schizophrenia subjects treated with SGAs. METHODS:Cross-sectional, fasting untargeted serum metabolomic profiling was conducted in 82 subjects diagnosed with bipolar I disorder (n = 30 on SGAs and n = 32 on lithium) or schizophrenia (n = 20). Metabolomic profiles of bipolar subjects treated with SGAs were compared to bipolar subjects treated with lithium and schizophrenia subjects treated with SGAs using multivariate methods. RESULTS:Partial lease square discriminant analysis (PLS-DA) plots showed separation between bipolar subjects treated with SGAs, bipolar subjects treated with lithium, or schizophrenia subjects treated with SGAs. Top influential metabolite features were associated with several pathways including that of polyunsaturated fatty acids, pyruvate, glucose, and branched chain amino acids. CONCLUSIONS:The findings from this study require further validation in pre- and posttreated bipolar and schizophrenia subjects, but suggest that the pharmacometabolome may be diagnosis specific.
Project description:DNA replication must be faithful and follow a well-defined spatiotemporal program closely linked to transcriptional activity, epigenomic marks, intranuclear structures, mutation rate and cell fate determination. Among the readouts of the spatiotemporal program of DNA replication, replication timing analyses require not only complex and time-consuming experimental procedures, but also skills in bioinformatics. We developed a dedicated Shiny interactive web application, the START-R (Simple Tool for the Analysis of the Replication Timing based on R) suite, which analyzes DNA replication timing in a given organism with high-throughput data. It reduces the time required for generating and analyzing simultaneously data from several samples. It automatically detects different types of timing regions and identifies significant differences between two experimental conditions in ∼15 min. In conclusion, START-R suite allows quick, efficient and easier analyses of DNA replication timing for all organisms. This novel approach can be used by every biologist. It is now simpler to use this method in order to understand, for example, whether 'a favorite gene or protein' has an impact on replication process or, indirectly, on genomic organization (as Hi-C experiments), by comparing the replication timing profiles between wild-type and mutant cell lines.
Project description:Molecular networking connects mass spectra of molecules based on the similarity of their fragmentation patterns. However, during ionization, molecules commonly form multiple ion species with different fragmentation behavior. As a result, the fragmentation spectra of these ion species often remain unconnected in tandem mass spectrometry-based molecular networks, leading to redundant and disconnected sub-networks of the same compound classes. To overcome this bottleneck, we develop Ion Identity Molecular Networking (IIMN) that integrates chromatographic peak shape correlation analysis into molecular networks to connect and collapse different ion species of the same molecule. The new feature relationships improve network connectivity for structurally related molecules, can be used to reveal unknown ion-ligand complexes, enhance annotation within molecular networks, and facilitate the expansion of spectral reference libraries. IIMN is integrated into various open source feature finding tools and the GNPS environment. Moreover, IIMN-based spectral libraries with a broad coverage of ion species are publicly available.
Project description:While in nucleotide sequencing, the analysis of DNA from complex mixtures of organisms is common, this is not yet true for mass spectrometric data analysis of complex mixtures. The comparative analyses of mass spectrometry data of microbial communities at the molecular level is difficult to perform, especially in the context of a host. The challenge does not lie in generating the mass spectrometry data, rather much of the difficulty falls in the realm of how to derive relevant information from this data. The informatics based techniques to visualize and organize datasets are well established for metagenome sequencing; however, due to the scarcity of informatics strategies in mass spectrometry, it is currently difficult to cross correlate two very different mass spectrometry data sets from microbial communities and their hosts. We highlight that molecular networking can be used as an organizational tool of tandem mass spectrometry data, automated database search for rapid identification of metabolites, and as a workflow to manage and compare mass spectrometry data from complex mixtures of organisms. To demonstrate this platform, we show data analysis from hard corals and a human lung associated with cystic fibrosis.
Project description:Obesity rates among children are growing rapidly worldwide, placing massive pressure on healthcare systems. Untargeted metabolomics can expand our understanding of the pathogenesis of obesity and elucidate mechanisms related to its symptoms. However, the metabolic signatures of obesity in children have not been thoroughly investigated. Herein, we explored metabolites associated with obesity development in childhood. Untargeted metabolomic profiling was performed on fasting serum samples from 27 obese Caucasian children and adolescents and 15 sex- and age-matched normal-weight children. Three metabolomic assays were combined and yielded 726 unique identified metabolites: gas chromatography-mass spectrometry (GC-MS), hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC LC-MS/MS), and lipidomics. Univariate and multivariate analyses showed clear discrimination between the untargeted metabolomes of obese and normal-weight children, with 162 significantly differentially expressed metabolites between groups. Children with obesity had higher concentrations of branch-chained amino acids and various lipid metabolites, including phosphatidylcholines, cholesteryl esters, triglycerides. Thus, an early manifestation of obesity pathogenesis and its metabolic consequences in the serum metabolome are correlated with altered lipid metabolism. Obesity metabolite patterns in the adult population were very similar to the metabolic signature of childhood obesity. Identified metabolites could be potential biomarkers and used to study obesity pathomechanisms.
Project description:Lack of standardized applications of bioinformatics and statistical approaches for pre- and postprocessing of global metabolomic profiling data sets collected using high-resolution mass spectrometry platforms remains an inadequately addressed issue in the field. Several publications now recognize that data analysis outcome variability is caused by different data treatment approaches. Yet, there is a lack of interlaboratory reproducibility studies that have looked at the contribution of data analysis techniques toward variability/overlap of results. The goal of our study was to identify the contribution of data pre- and postprocessing methods on metabolomics analysis results. We performed urinary metabolomics from samples obtained from mice exposed to 5 Gray of external beam gamma rays and those exposed to sham irradiation (control group). The data files were made available to study participants for comparative analysis using commonly used bioinformatics and/or biostatistics approaches in their laboratories. The participants were asked to report back the top 50 metabolites/features contributing significantly to the group differences. Herein we describe the outcome of this study which suggests that data preprocessing is critical in defining the outcome of untargeted metabolomic studies.
Project description:Oncogene-associated metabolic signatures in prostate cancer, identified by an integrative analysis of cultured cells and murine and human tumors, suggest that AKT activation results in a glycolytic phenotype whereas MYC induces aberrant lipid metabolism. Heterogeneity in human tumors makes this simplistic interpretation obtained from experimental models more challenging. Metabolic reprogramming as a function of distinct molecular aberrations has major diagnostic and therapeutic implications.