Unknown

Dataset Information

0

Towards Understanding Excited-State Properties of Organic Molecules Using Time-Resolved Soft X-ray Absorption Spectroscopy.


ABSTRACT: The extension of the pump-probe approach known from UV/VIS spectroscopy to very short wavelengths together with advanced simulation techniques allows a detailed analysis of excited-state dynamics in organic molecules or biomolecular structures on a nanosecond to femtosecond time level. Optical pump soft X-ray probe spectroscopy is a relatively new approach to detect and characterize optically dark states in organic molecules, exciton dynamics or transient ligand-to-metal charge transfer states. In this paper, we describe two experimental setups for transient soft X-ray absorption spectroscopy based on an LPP emitting picosecond and sub-nanosecond soft X-ray pulses in the photon energy range between 50 and 1500 eV. We apply these setups for near-edge X-ray absorption fine structure (NEXAFS) investigations of thin films of a metal-free porphyrin, an aggregate forming carbocyanine and a nickel oxide molecule. NEXAFS investigations have been carried out at the carbon, nitrogen and oxygen K-edge as well as on the Ni L-edge. From time-resolved NEXAFS carbon, K-edge measurements of the metal-free porphyrin first insights into a long-lived trap state are gained. Our findings are discussed and compared with density functional theory calculations.

SUBMITTER: Stiel H 

PROVIDER: S-EPMC8706469 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8008446 | biostudies-literature
| S-EPMC9198071 | biostudies-literature
| S-EPMC5074555 | biostudies-literature
| S-EPMC7086398 | biostudies-literature
| S-EPMC2777224 | biostudies-other
| S-EPMC6067047 | biostudies-literature
| S-EPMC4167288 | biostudies-literature
| S-EPMC5873173 | biostudies-literature
| S-EPMC3306522 | biostudies-literature
| S-EPMC10236435 | biostudies-literature