Unknown

Dataset Information

0

Electrostatics Drive Oligomerization and Aggregation of Human Interferon Alpha-2a.


ABSTRACT: Aggregation is a common phenomenon in the field of protein therapeutics and can lead to function loss or immunogenic patient responses. Two strategies are currently used to reduce aggregation: (1) finding a suitable formulation, which is labor-intensive and requires large protein quantities, or (2) engineering the protein, which requires extensive knowledge about the protein aggregation pathway. We present a biophysical characterization of the oligomerization and aggregation processes by Interferon alpha-2a (IFNα-2a), a protein drug with antiviral and immunomodulatory properties. This study combines experimental high throughput screening with detailed investigations by small-angle X-ray scattering and analytical ultracentrifugation. Metropolis Monte Carlo simulations are used to gain insight into the underlying intermolecular interactions. IFNα-2a forms soluble oligomers that are controlled by a fast pH and concentration-dependent equilibrium. Close to the isoelectric point of 6, IFNα-2a forms insoluble aggregates which can be prevented by adding salt. We show that monomer attraction is driven mainly by molecular anisotropic dipole-dipole interactions that increase with increasing pH. Repulsion is due to monopole-monopole interactions and depends on the charge of IFNα-2a. The study highlights how combining multiple methods helps to systematically dissect the molecular mechanisms driving oligomer formation and to design ultimately efficient strategies for preventing detrimental protein aggregation.

SUBMITTER: Pohl C 

PROVIDER: S-EPMC8713289 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

2010-05-16 | GSE21158 | GEO
| S-EPMC4312256 | biostudies-literature
| S-EPMC8616157 | biostudies-literature
2009-07-28 | GSE16421 | GEO
| S-EPMC7370040 | biostudies-literature
| S-EPMC4230739 | biostudies-literature
| S-EPMC3672174 | biostudies-literature