Ontology highlight
ABSTRACT: Purpose
Patients with chronic obstructive pulmonary disease (COPD) are particularly vulnerable to hypoxia-induced autonomic dysregulation. Hypoxemia is marked during sleep. In COPD, altitude exposure is associated with an increase in blood pressure (BP) and a decrease in baroreflex-sensitivity (BRS). Whether nocturnal oxygen therapy (NOT) may mitigate these cardiovascular autonomic changes in COPD at altitude is unknown. Materials and Methods
In a randomized placebo-controlled cross-over trial, 32 patients with moderate-to-severe COPD living <800 m were subsequently allocated to NOT and placebo during acute exposure to altitude. Measurements were done at low altitude at 490 m and during two stays at 2048 m on NOT (3 L/min) and placebo (3 L/min, ambient air) via nasal cannula. Allocation and intervention sequences were randomized. Outcomes of interest were BP, BRS (from beat-to-beat BP measurement), BP variability (BPV), and heart rate. Results
About 23/32 patients finished the trial per protocol (mean (SD) age 66 (5) y, FEV1 62 (14) % predicted) and 9/32 experienced altitude-related illnesses (8 vs 1, p < 0.05 placebo vs NOT). NOT significantly mitigated the altitude-induced increase in systolic BP compared to placebo (Δ median −5.8 [95% CI −22.2 to −1.4] mmHg, p = 0.05) but not diastolic BP (−3.5 [95% CI −12.6 to 3.0] mmHg; p = 0.21) or BPV. BRS at altitude was significantly higher in NOT than in placebo (1.7 [95% CI 0.3 to 3.4] ms/mmHg, p = 0.02). Conclusion
NOT may protect from hypoxia-induced autonomic dysregulation upon altitude exposure in COPD and thus protect from a relevant increase in BP and decrease in BRS. NOT may provide cardiovascular benefits in COPD during conditions of increased hypoxemia and may be considered in COPD travelling to altitude.
SUBMITTER: Meszaros M
PROVIDER: S-EPMC8713709 | biostudies-literature |
REPOSITORIES: biostudies-literature