Global Genome Diversity and Recombination in Mycoplasma pneumoniae.
Ontology highlight
ABSTRACT: Genomic changes in Mycoplasma pneumoniae caused by adaptation to environmental or ecologic pressures are poorly understood. We collected M. pneumoniae from children who had confirmed pneumonia in Taiwan during 2017-2020. We used whole-genome sequencing to compare these isolates with a worldwide collection of current and historical clinical strains for characterizing population structures. A phylogenetic tree for 284 strains showed that all sequenced strains consisted of 5 clades: T1-1 (sequence type [ST]1), T1-2 (mainly ST3), T1-3 (ST17), T2-1 (mainly ST2), and T2-2 (mainly ST14). We identified a putative recombination block containing 6 genes (MPN366‒371). Macrolide resistance involving 23S rRNA mutations was detected for each clade. Clonal expansion of macrolide resistance occurred mostly within subtype 1 strains, of which clade T1-2 showed the highest recombination rate and genome diversity. Functional characterization of recombined regions provided clarification of the biologic role of these recombination events in the evolution of M. pneumoniae.
SUBMITTER: Hsieh YC
PROVIDER: S-EPMC8714221 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA