Unknown

Dataset Information

0

Protective Effects of Eicosapentaenoic Acid on the Glomerular Endothelium via Inhibition of EndMT in Diabetes.


ABSTRACT: Diabetes-induced endothelial pathologies are hypothesized to lead to the progression of diabetic kidney disease (DKD). The endothelial to mesenchymal transition (EndMT) possibly induces fibrosis, leading to glomerulosclerosis in the kidney. Furthermore, this could lead to albuminuria in diabetic nephropathy due to glomerular endothelial dysfunction. Eicosapentaenoic acid (EPA), purified from fish oil, decreases inflammatory cytokine levels in glomerulonephritis. Here, we aimed at finding whether ethyl eicosapentaenoate (EPA-E) exerts renal protective effects via EndMT inhibition. To find out whether EPA inhibits EndMT in vitro, the changes in CD31 expression were studied in cultured mouse endothelial cells. The addition of the conditioned medium from the adipocyte culture significantly decreased the protein levels of CD31, while the addition of EPA-E partially reversed this inhibition. Further, EndMT inhibition by EPA-E treatment might occur via the inhibition of the protein kinase Cβ (PKCβ)/transforming growth factor-β (TGF-β)/plasminogen activator inhibitor-1 (PAI-1) signaling and not via microRNAs. Streptozotocin-induced diabetic mice fed a high-fat diet (60% from fat) exhibited mesangial expansion and albuminuria. Induction of EPA-E ameliorated the mesangial expansion and decreased albuminuria without affecting blood pressure, triglyceride and free fatty acid levels, and intraperitoneal glucose. These findings suggest that EPA-E exerts renal protective effects on endothelial cells, by normalizing EndMT followed by the PKCβ/TGF-β/PAI-1 signaling. Thus, EPA-E has the potential for imparting renal protection by regulating EndMT in DKD.

SUBMITTER: Yasuzawa T 

PROVIDER: S-EPMC8720008 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC7294720 | biostudies-literature
| S-EPMC6933373 | biostudies-literature
| S-EPMC7582637 | biostudies-literature
| S-EPMC7016836 | biostudies-literature
| S-EPMC9329469 | biostudies-literature
| S-EPMC7316822 | biostudies-literature
| S-EPMC5777430 | biostudies-literature
| S-EPMC2292427 | biostudies-other
| S-EPMC5854245 | biostudies-literature
| S-EPMC10426208 | biostudies-literature