Project description:Epibatidine is an alkaloid toxin that binds with high affinity to nicotinic and muscarinic acetylcholine receptors, and has been extensively used as a research tool. To examine binding interactions at the nicotinic receptor, it has been co-crystallised with the structural homologue acetylcholine binding protein (AChBP; PDB ID 2BYQ), and with an AChBP chimaera (3SQ6) that shares 64% sequence identity with the α7 nACh receptor. However, the binding orientations revealed by AChBP co-crystal structures may not precisely represent their receptor homologues and experimental evidence is needed to verify the ligand poses. Here we identify potential binding site interactions between epibatidine and AChBP residues, and substitute equivalent positions in the α7 nACh receptor. The effects of these are probed by [3H]epibatidine binding following the expression α7 nACh receptor cysteine mutants in HEK 293 cells. Of the sixteen mutants created, the affinity of epibatidine was unaffected by the substitutions Q55C, L106C, L116C, T146C, D160C and S162C, reduced by C186A and C187A, increased by Q114C and S144C, and abolished by W53C, Y91C, N104C, W145C, Y184C and Y191C. These results are consistent with the predicted orientations in AChBP and suggest that epibatidine is likely to occupy a similar location at α7 nACh receptors. We speculate that steric constraints placed upon the C-5 position of the pyridine ring in 3SQ6 may account for the relatively poor affinities of epibatidine derivatives that are substituted at this position.
Project description:The S1Q3T3 sign associated with cor pulmonale was first described by Sylvester McGinn and Paul White in 1935. It has since become an overlooked and relatively nonspecific finding associated with pulmonary embolism. We present this case to elucidate the importance for clinicians to promptly identify this electrocardiographic triad.
Project description:Oculopharyngeal muscular dystrophy (OPMD) is an uncommon autosomal dominant disorder that has been characterized by slow progression. Neuromuscular disease is one of several etiologies of pulmonary volume restriction from extrinsic or parenchymatous causes and can lead to pulmonary hypertension and right-sided heart failure, which is consistent with cor pulmonale. Here we describe a case of an OPMD patient with cor pulmonale that was reversed using mechanically-assisted ventilation. <Learning objective: Although respiratory muscle weakness is an uncommon cause of respiratory failure and a rare cause of cor pulmonale, the specific physical signs for it could evoke those serious respiratory and cardiac conditions as well as underlying neuromuscular disease. Abdominal paradox is the most characteristic physical sign of dysfunction of the diaphragm, the principal muscle of respiration. However, it is often not easy to notice the sign, especially in the patients with neuromuscular disease.>.
Project description:Coronavirus disease-19 (COVID-19)-related severe acute respiratory distress syndrome can lead to acute cor pulmonale. We report a case of acute cor pulmonale secondary to severe COVID-19 acute respiratory distress syndrome diagnosed with transesophageal echocardiography. Almitrine infusion allowed rapid enhancement of right ventricular function as well as improvement in oxygenation. (Level of Difficulty: Intermediate.).
Project description:Pentameric ligand-gated ion channels (pLGICs) are expressed throughout the central and peripheral nervous systems of vertebrates and modulate many aspects of human health and disease. Recent structural and computational data indicate that cation-selective pLGICs contain a long helical extension (MA) of one of the transmembrane helices. The MA helix has been shown to affect both the membrane expression of, and ion conductance levels through, these pLGICs. Here we probe the functional effects of 68 mutations in the MA region of the α4β2 nicotinic acetylcholine receptor (nAChR), using a voltage-sensitive membrane dye and radioligand binding to measure receptor function and expression/assembly. We found seven alanine mutations in a stretch of the MA helix that prevent correct receptor folding and/or assembly, as evidenced by the lack of both function and ligand binding. A further two alanine mutations resulted in receptors that were capable of binding ligand but showed no functional response, and we propose that, in these mutants, ligand binding is insufficient to trigger channel opening. The data clarify the effect of the MA helix, and as the effects of some of our mutations in the α4β2 nAChR differ from the effects of equivalent mutations in other cation-selective pLGICs, we suggest that residues in the MA helix may play subtly different roles in different receptors.
Project description:BACKGROUND:The classic cardiovascular complication of chronic obstructive pulmonary disease (COPD) is cor pulmonale or right ventricular (RV) enlargement. Most studies of cor pulmonale were conducted decades ago. OBJECTIVES:This study sought to examine RV changes in contemporary COPD and emphysema using cardiac magnetic resonance (CMR) imaging. METHODS:We performed a case-control study nested predominantly in 2 general population studies of 310 participants with COPD and control subjects 50 to 79 years of age with ?10 pack-years of smoking who were free of clinical cardiovascular disease. RV volumes and mass were assessed using magnetic resonance imaging. COPD and COPD severity were defined according to standard spirometric criteria. The percentage of emphysema was defined as the percentage of lung regions <-950 Hounsfield units on full-lung computed tomography; emphysema subtypes were scored by radiologists. Results were adjusted for age, race/ethnicity, sex, height, weight, smoking status, pack-years, systemic hypertension, and sleep apnea. RESULTS:Right ventricular end-diastolic volume (RVEDV) was reduced in COPD compared with control subjects (-7.8 ml; 95% confidence interval: -15.0 to -0.5 ml; p = 0.04). Increasing severity of COPD was associated with lower RVEDV (p = 0.004) and lower RV stroke volume (p < 0.001). RV mass and ejection fraction were similar between the groups. A greater percentage of emphysema also was associated with lower RVEDV (p = 0.005) and stroke volume (p < 0.001), as was the presence of centrilobular and paraseptal emphysema. CONCLUSIONS:RV volumes are lower without significant alterations in RV mass and ejection fraction in contemporary COPD, and this reduction is related to the greater percentage of emphysema on computed tomography.
Project description:Several neonicotinoids have recently been shown to activate the nicotinic acetylcholine receptor (nAChR) on human neurons. Moreover, imidacloprid (IMI) and other members of this pesticide family form a set of diverse metabolites within crops. Among these, desnitro-imidacloprid (DN-IMI) is of special toxicological interest, as there is evidence (i) for human dietary exposure to this metabolite, (ii) and that DN-IMI is a strong trigger of mammalian nicotinic responses. We set out here to quantify responses of human nAChRs to DN-IMI and an alternative metabolite, IMI-olefin. To evaluate toxicological hazards, these data were then compared to those of IMI and nicotine. Ca2+-imaging experiments on human neurons showed that DN-IMI exhibits an agonistic effect on nAChRs at sub-micromolar concentrations (equipotent with nicotine) while IMI-olefin activated the receptors less potently (in a similar range as IMI). Direct experimental data on the interaction with defined receptor subtypes were obtained by heterologous expression of various human nAChR subtypes in Xenopus laevis oocytes and measurement of the transmembrane currents evoked by exposure to putative ligands. DN-IMI acted on the physiologically important human nAChR subtypes α7, α3β4, and α4β2 (high-sensitivity variant) with similar potency as nicotine. IMI and IMI-olefin were confirmed as nAChR agonists, although with 2-3 orders of magnitude lower potency. Molecular docking studies, using receptor models for the α7 and α4β2 nAChR subtypes supported an activity of DN-IMI similar to that of nicotine. In summary, these data suggest that DN-IMI functionally affects human neurons similar to the well-established neurotoxicant nicotine by triggering α7 and several non-α7 nAChRs.
Project description:ObjectivesThis study aimed to evaluate the effects of external diaphragmatic pacing (EDP) on patients with chronic cor pulmonale (CCP).MethodsFifty patients with CCP were enrolled in Kashgar Prefecture Second People's Hospital in Xinjiang Uygur Autonomous Region of China from 2016 to 2017. The patients were randomized into a group that received anti-CCP therapy (negative control group) or a group that received additional EDP treatment (EDP group). We recorded and compared maximal inspiratory pressure (MIP), maximal expiratory pressure (MEP), forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC, and the 6-minute walking test between the two groups on the first and tenth days of treatment.ResultsTen days after treatment began, MIP, FVC, and the 6-minute walking test were significantly improved in both groups. Importantly, MIP and FVC were significantly higher in the EDP group compared with the control group on the tenth day.ConclusionIn addition to treatment for CCP, these patients can obtain extra benefit by using EDP treatment.