Ontology highlight
ABSTRACT: Introduction
Identifying predictors of mental health symptoms after the initial phase of the pandemic may inform the development of targeted interventions to reduce its negative long-term mental health consequences. In the current study, we aimed to simultaneously evaluate the prospective influence of life change stress, personal COVID-19 impact, prior mental health, worry about COVID-19, state-level indicators of pandemic threat, and socio-demographic factors on mood and anxiety symptoms in November 2020 among adults and children in the US and UK. Methods
We used a longitudinal cohort study using the Coronavirus Health Impact Survey (CRISIS) collected at 3 time points: an initial assessment in April 2020 (“April”), a reassessment 3 weeks later (“May”), and a 7-month follow-up in November 2020 (“November”). Online surveys were collected in the United States and United Kingdom by Prolific Academic, a survey recruitment service, with a final sample of 859 Adults and 780 children (collected via parent report). We found subtypes of pandemic-related life change stress in social and economic domains derived through Louvain Community Detection. We assessed recalled mood and perceived mental health prior to the pandemic, worries about COVID-19, personal and family impacts of COVID-19, and socio-demographic characteristics. We used a conditional random forest approach to predict November mood states using these data from April and May and to rank the variable importance of each of the predictor items. Results
Levels of mood symptoms in November 2020 measured with the circumplex model of affect. We found 3 life change stress subtypes among adults and children: Lower Social/Lower Economic (adults and children), Higher Social/Higher Economic (adults and children), Lower Social/Higher Economic (adults), and Intermediate Social/Lower Economic (children). Overall, mood symptoms decreased between April and November 2020, but shifting from lower to higher-stress subtypes between time points was associated with increasing symptoms. For both adults and children, the most informative predictors of mood symptoms in November identified by conditional random forest models were prior mood and perceived mental health, worries about COVID, and sources of life change. Discussion
The relative importance of these predictors was the most prominent difference in findings between adults and children, with lifestyle changes stress regarding friendships being more predictive of mood outcomes than worries about COVID in children. In the US, objective state-level indicators of COVID-19 threat were less predictive of November mood than these other predictors. We found that in addition to the well-established influences of prior mood and worry, heterogeneous subtypes of pandemic-related stress were differentially associated with mood after the initial phase of the pandemic. Greater research on diverse patterns of pandemic experience may elucidate modifiable targets for treatment and prevention.
SUBMITTER: Nikolaidis A
PROVIDER: S-EPMC8720815 | biostudies-literature |
REPOSITORIES: biostudies-literature