Project description:Huntington Disease (HD) is an inherited movement disorder caused by expanded CAG repeats in the Huntingtin gene. We have used single nucleus RNASeq (snRNASeq) to uncover cellular phenotypes that change in the disease, investigating single cell gene expression in cingulate cortex of patients with HD and comparing the gene expression to that of patients with no neurological disease. In this study, we focused on astrocytes, although we found significant gene expression differences in neurons, oligodendrocytes, and microglia as well. In particular, the gene expression profiles of astrocytes in HD showed multiple signatures, varying in phenotype from cells that had markedly upregulated metallothionein and heat shock genes, but had not completely lost the expression of genes associated with normal protoplasmic astrocytes, to astrocytes that had substantially upregulated glial fibrillary acidic protein (GFAP) and had lost expression of many normal protoplasmic astrocyte genes as well as metallothionein genes. When compared to astrocytes in control samples, astrocyte signatures in HD also showed downregulated expression of a number of genes, including several associated with protoplasmic astrocyte function and lipid synthesis. Thus, HD astrocytes appeared in variable transcriptional phenotypes, and could be divided into several different "states", defined by patterns of gene expression. Ultimately, this study begins to fill the knowledge gap of single cell gene expression in HD and provide a more detailed understanding of the variation in changes in gene expression during astrocyte "reactions" to the disease.
Project description:Single-cell RNA-seq's (scRNA-seq) unprecedented cellular resolution at a genome-wide scale enables us to address questions about cellular heterogeneity that are inaccessible using methods that average over bulk tissue extracts. However, scRNA-seq data sets also present additional challenges such as high transcript dropout rates, stochastic transcription events, and complex population substructures. Here, we present a single-cell RNA-seq analysis and klustering evaluation (SAKE), a robust method for scRNA-seq analysis that provides quantitative statistical metrics at each step of the analysis pipeline. Comparing SAKE to multiple single-cell analysis methods shows that most methods perform similarly across a wide range of cellular contexts, with SAKE outperforming these methods in the case of large complex populations. We next applied the SAKE algorithms to identify drug-resistant cellular populations as human melanoma cells respond to targeted BRAF inhibitors (BRAFi). Single-cell RNA-seq data from both the Fluidigm C1 and 10x Genomics platforms were analyzed with SAKE to dissect this problem at multiple scales. Data from both platforms indicate that BRAF inhibitor-resistant cells can emerge from rare populations already present before drug application, with SAKE identifying both novel and known markers of resistance. These experimentally validated markers of BRAFi resistance share overlap with previous analyses in different melanoma cell lines, demonstrating the generality of these findings and highlighting the utility of single-cell analysis to elucidate mechanisms of BRAFi resistance.
Project description:High-throughput sequencing has revealed a tremendous complexity of cellular transcriptomes, which is partly due to the generation of multiple alternative transcripts from a single gene locus. Because alternative transcripts often have low abundance in bulk cells, the functions of most of these transcripts and their relationship with their canonical counterparts remain unclear. Here we applied single-cell RNA-Seq to analyze the transcriptome complexity of in vitro-differentiated, murine type 2 T helper (Th2) cells. We found that cytokine gene transcripts contribute most of the intercellular heterogeneity, with a group of universal cytokines, including interleukins 1a, 2, 3, and 16, being bimodally expressed. At the single-cell level, use of alternative promoters prevalently generated alternative transcripts. For instance, although undetectable in bulk cells, a noncoding RNA isoform of IL-4 (IL4nc), which was driven by an intronic promoter in the IL-4 locus, was predominantly expressed in a subset of Th2 cells. IL4nc displayed distinct temporal expression patterns compared with the canonical IL-4 mRNA and post-transcriptionally promoted the production of IL-4 protein in Th2 cells. In conclusion, our findings reveal a mechanism whereby minor noncanonical transcripts post-transcriptionally regulate expression of their cognate canonical genes.
Project description:Oscillatory gene expression is fundamental to development, but technologies for monitoring expression oscillations are limited. We have developed a statistical approach called Oscope to identify and characterize the transcriptional dynamics of oscillating genes in single-cell RNA-seq data from an unsynchronized cell population. Applying Oscope to a number of data sets, we demonstrated its utility and also identified a potential artifact in the Fluidigm C1 platform.
Project description:Branching organs, including the salivary and mammary glands, lung, and kidney, arise as epithelial buds that are morphologically very similar. However, the mesenchyme is known to guide epithelial morphogenesis and to help govern cell fate and eventual organ specificity. We performed single-cell transcriptome analyses of 14,441 cells from embryonic day 12 submandibular and parotid salivary glands to characterize their molecular identities during bud initiation. The mesenchymal cells were considerably more heterogeneous by clustering analysis than the epithelial cells. Nonetheless, distinct clusters were evident among even the epithelial cells, where unique molecular markers separated presumptive bud and duct cells. Mesenchymal cells formed separate, well-defined clusters specific to each gland. Neuronal and muscle cells of the 2 glands in particular showed different markers and localization patterns. Several gland-specific genes were characteristic of different rhombomeres. A muscle cluster was prominent in the parotid, which was not myoepithelial or vascular smooth muscle. Instead, the muscle cluster expressed genes that mediate skeletal muscle differentiation and function. Striated muscle was indeed found later in development surrounding the parotid gland. Distinct spatial localization patterns of neuronal and muscle cells in embryonic stages appear to foreshadow later differences in adult organ function. These findings demonstrate that the establishment of transcriptional identities emerges early in development, primarily in the mesenchyme of developing salivary glands. We present the first comprehensive description of molecular signatures that define specific cellular landmarks for the bud initiation stage, when the neural crest-derived ectomesenchyme predominates in the salivary mesenchyme that immediately surrounds the budding epithelium. We also provide the first transcriptome data for the largely understudied embryonic parotid gland as compared with the submandibular gland, focusing on the mesenchymal cell populations.
Project description:FSHD is characterized by the misexpression of DUX4 in skeletal muscle. Although DUX4 upregulation is thought to be the pathogenic cause of FSHD, DUX4 is lowly expressed in patient samples, and analysis of the consequences of DUX4 expression has largely relied on artificial overexpression. To better understand the native expression profile of DUX4 and its targets, we performed bulk RNA-seq on a 6-day differentiation time-course in primary FSHD2 patient myoblasts. We identify a set of 54 genes upregulated in FSHD2 cells, termed FSHD-induced genes. Using single-cell and single-nucleus RNA-seq on myoblasts and differentiated myotubes, respectively, we captured, for the first time, DUX4 expressed at the single-nucleus level in a native state. We identified two populations of FSHD myotube nuclei based on low or high enrichment of DUX4 and FSHD-induced genes ("FSHD-Lo" and "FSHD Hi", respectively). FSHD-Hi myotube nuclei coexpress multiple DUX4 target genes including DUXA, LEUTX and ZSCAN4, and also upregulate cell cycle-related genes with significant enrichment of E2F target genes and p53 signaling activation. We found more FSHD-Hi nuclei than DUX4-positive nuclei, and confirmed with in situ RNA/protein detection that DUX4 transcribed in only one or two nuclei is sufficient for DUX4 protein to activate target genes across multiple nuclei within the same myotube. DUXA (the DUX4 paralog) is more widely expressed than DUX4, and depletion of DUXA suppressed the expression of LEUTX and ZSCAN4 in late, but not early, differentiation. The results suggest that the DUXA can take over the role of DUX4 to maintain target gene expression. These results provide a possible explanation as to why it is easier to detect DUX4 target genes than DUX4 itself in patient cells and raise the possibility of a self-sustaining network of gene dysregulation triggered by the limited DUX4 expression.
Project description:While the majority of cells contain a single nucleus, cell types such as trophoblasts, osteoclasts, and skeletal myofibers require multinucleation. One advantage of multinucleation can be the assignment of distinct functions to different nuclei, but comprehensive interrogation of transcriptional heterogeneity within multinucleated tissues has been challenging due to the presence of a shared cytoplasm. Here, we utilized single-nucleus RNA-sequencing (snRNA-seq) to determine the extent of transcriptional diversity within multinucleated skeletal myofibers. Nuclei from mouse skeletal muscle were profiled across the lifespan, which revealed the presence of distinct myonuclear populations emerging in postnatal development as well as aging muscle. Our datasets also provided a platform for discovery of genes associated with rare specialized regions of the muscle cell, including markers of the myotendinous junction and functionally validated factors expressed at the neuromuscular junction. These findings reveal that myonuclei within syncytial muscle fibers possess distinct transcriptional profiles that regulate muscle biology.
Project description:Acquired resistance towards sorafenib treatment was found in HCC patients, which results in poor prognosis. To investigate the enhanced metastatic potential of sorafenib resistance cells, sorafenib-resistant (SorR) cell lines were established by long-term exposure of the HCC cells to the maximum tolerated dose of sorafenib. Cell proliferation assay and qPCR of ABC transporter genes (ABCC1-3) were first performed to confirm the resistance of cells. Migration and invasion assays, and immunoblotting analysis on the expression of epithelial to mesenchymal transition (EMT) regulatory proteins were performed to study the metastatic potential of SorR cells. The expression of CD44 and CD133 were studied by flow cytometry and the gene expressions of pluripotency factors were studied by qPCR to demonstrate the enrichment of cancer stem cells (CSCs) in SorR cells. Control (CTL) and SorR cells were also injected orthotopically to the livers of NOD-SCID mice to investigate the development of lung metastasis. Increased expressions of ABCC1-3 were found in SorR cells. Enhanced migratory and invasive abilities of SorR cells were observed. The changes in expression of EMT regulatory proteins demonstrated an activation of the EMT process in SorR cells. Enriched proportion of CD44(+) and CD44(+)CD133(+) cells were also observed in SorR cells. All (8/8) mice injected with SorR cells demonstrated lung metastasis whereas only 1/8 mouse injected with CTL cells showed lung metastasis. HCC cells with sorafenib resistance demonstrated a higher metastatic potential, which may be due to the activated EMT process. Enriched CSCs were also demonstrated in the sorafenib resistant cells. This study suggests that advanced HCC patients with acquired sorafenib resistance may have enhanced tumor growth or distant metastasis, which raises the concern of long-term sorafenib treatment in advanced HCC patients who have developed resistance of sorafenib.