Project description:Stem cells control their mitotic activity to decide whether to proliferate or to stay in quiescence. Drosophila neural stem cells (NSCs) are quiescent at early larval stages, when they are reactivated in response to metabolic changes. Here we report that cell-contact inhibition of growth through the canonical Hippo signalling pathway maintains NSC quiescence. Loss of the core kinases hippo or warts leads to premature nuclear localization of the transcriptional co-activator Yorkie and initiation of growth and proliferation in NSCs. Yorkie is necessary and sufficient for NSC reactivation, growth and proliferation. The Hippo pathway activity is modulated via inter-cellular transmembrane proteins Crumbs and Echinoid that are both expressed in a nutrient-dependent way in niche glial cells and NSCs. Loss of crumbs or echinoid in the niche only is sufficient to reactivate NSCs. Finally, we provide evidence that the Hippo pathway activity discriminates quiescent from non-quiescent NSCs in the Drosophila nervous system.
Project description:BackgroundForkhead box protein A1 (FOXA1) promotes luminal differentiation, and hypermethylation of the gene can be a mechanism of developing estrogen receptor-negative (ER-) breast cancer. We examined FOXA1 in breast tumor and adjacent normal tissue in relation to reproductive factors, particularly higher parity and no breastfeeding, that are associated with ER- tumors.MethodsWe performed IHC for FOXA1 in breast tumors (n = 1,329) and adjacent normal tissues (n = 298) in the Women's Circle of Health Study (949 Blacks and 380 Whites). Protein expression levels were summarized by histology (H) scores. Generalized linear models were used to assess FOXA1 protein expression in relation to reproductive factors by ER status.ResultsER-positive (ER+) versus ER- tumors had higher FOXA1 protein expression (P < 0.001). FOXA1 expression was higher in tumor versus paired adjacent normal tissue in women with ER+ or non-triple-negative cancer (both P < 0.001), but not in those with ER- or triple-negative cancer. Higher number of births (1, 2, and 3+) was associated with lower FOXA1 protein expression in ER+ tumors [differences in H score, or β = -8.5; 95% confidence interval (CI), -15.1 to -2.0], particularly among parous women who never breastfed (β = -10.4; 95% CI, -19.7 to -1.0), but not among those who breastfed (β = -7.5; 95% CI, -16.9 to 1.8). The associations for ER- tumors were similar, although they were not statistically significant.ConclusionsIn this tumor-based study, higher parity was associated with lower FOXA1 expression in ER+ tumors, and breastfeeding may ameliorate the influence.ImpactThese findings contribute to our understanding of FOXA1 methylation and breast cancer etiology.
Project description:Hippo signaling restricts tissue growth by inhibiting the transcriptional effector YAP. Here we uncover a role of Hippo signaling and a tumor suppressor function of YAP in estrogen receptor positive (ER+) breast cancer. We find that inhibition of Hippo/MST1/2 or activation of YAP blocks the ERα transcriptional program and ER+ breast cancer growth. Mechanistically, the Hippo pathway transcription factor TEAD physically interacts with ERα to increase its promoter/enhancer occupancy whereas YAP inhibits ERα/TEAD interaction, decreases ERα occupancy on its target promoters/enhancers, and promotes ERα degradation by the proteasome. Furthermore, YAP inhibits hormone-independent transcription of ERα gene (ESR1). Consistently, high levels of YAP correlate with good prognosis of ER+ breast cancer patients. Finally, we find that pharmacological inhibition of Hippo/MST1/2 impeded tumor growth driven by hormone therapy resistant ERα mutants, suggesting that targeting the Hippo-YAP-TEAD signaling axis could be a potential therapeutical strategy to overcome endocrine therapy resistance conferred by ERα mutants.
Project description:Estrogen receptor positive (ER+) breast cancer (BCa) accounts for the highest proportion of breast cancer-related deaths. While endocrine therapy is highly effective for this subpopulation, endocrine resistance remains a major challenge and the identification of novel targets is urgently needed. Previously, we have shown that Semaphorin 3C (SEMA3C) is an autocrine growth factor that drives the growth and treatment resistance of various cancers, but its role in breast cancer progression and endocrine resistance is poorly understood. Here, we report that SEMA3C plays a role in maintaining the growth of ER+ BCa cells and is a novel, tractable therapeutic target for the treatment of ER+ BCa patients. Analyses of publicly available clinical datasets indicate that ER+ BCa patients express significantly higher levels of SEMA3C mRNA than other subtypes. Furthermore, SEMA3C mRNA expression was positively correlated with ESR1 mRNA expression. ER+ BCa cell lines (MCF7 and T47D) expressed higher levels of SEMA3C mRNA and protein than a normal mammary epithelial MCF10A cell line. ER siRNA knockdown was suppressed, while dose-dependent beta-estradiol treatment induced SEMA3C expression in both MCF7 and T47D cells, suggesting that SEMA3C is an ER-regulated gene. The stimulation of ER+ BCa cells with recombinant SEMA3C activated MAPK and AKT signaling in a dose-dependent manner. Conversely, SEMA3C silencing inhibited Estrogen Receptor (ER) expression, MAPK and AKT signaling pathways while simultaneously inducing apoptosis, as monitored by flow cytometry and Western blot analyses. SEMA3C silencing significantly inhibited the growth of ER+ BCa cells, implicating a growth dependency of ER+ BCa cells on SEMA3C. Moreover, the analysis of tamoxifen resistant (TamR) cell models (TamC3 and TamR3) showed that SEMA3C levels remain high despite treatment with tamoxifen. Tamoxifen-resistant cells remained dependent on SEMA3C for growth and survival. Treatment with B1SP Fc fusion protein, a SEMA3C pathway inhibitor, attenuated SEMA3C-induced signaling and growth across a panel of tamoxifen sensitive and resistant ER+ breast cancer cells. Furthermore, SEMA3C silencing and B1SP treatment were associated with decreased EGFR signaling in TamR cells. Here, our study implicates SEMA3C in a functional role in ER+ breast cancer signaling and growth that suggests ER+ BCa patients may benefit from SEMA3C-targeted therapy.
Project description:PurposeThe phase III ExteNET trial showed improved invasive disease-free survival in patients with HER2+ breast cancer treated with neratinib versus placebo after trastuzumab-based adjuvant therapy. The benefit from neratinib appeared to be greater in patients with ER+/HER2+ tumors. We thus sought to discover mechanisms that may explain the benefit from extended adjuvant therapy with neratinib.Experimental Design: Mice with established ER+/HER2+ MDA-MB-361 tumors were treated with paclitaxel plus trastuzumab ± pertuzumab for 4 weeks, and then randomized to fulvestrant ± neratinib treatment. The benefit from neratinib was evaluated by performing gene expression analysis for 196 ER targets, ER transcriptional reporter assays, and cell-cycle analyses.ResultsMice receiving "extended adjuvant" therapy with fulvestrant/neratinib maintained a complete response, whereas those treated with fulvestrant relapsed rapidly. In three ER+/HER2+ cell lines (MDA-MB-361, BT-474, UACC-893) but not in ER+/HER2- MCF7 cells, treatment with neratinib induced ER reporter transcriptional activity, whereas treatment with fulvestrant resulted in increased HER2 and EGFR phosphorylation, suggesting compensatory reciprocal crosstalk between the ER and ERBB RTK pathways. ER transcriptional reporter assays, gene expression, and immunoblot analyses showed that treatment with neratinib/fulvestrant, but not fulvestrant, potently inhibited growth and downregulated ER reporter activity, P-AKT, P-ERK, and cyclin D1 levels. Finally, similar to neratinib, genetic and pharmacologic inactivation of cyclin D1 enhanced fulvestrant action against ER+/HER2+ breast cancer cells.ConclusionsThese data suggest that ER blockade leads to reactivation of ERBB RTKs and thus extended ERBB blockade is necessary to achieve durable clinical outcomes in patients with ER+/HER2+ breast cancer.
Project description:PIK3CA, encoding the PI3Kα isoform, is the most frequently mutated oncogene in estrogen receptor (ER)-positive breast cancer. Isoform-selective PI3K inhibitors are used clinically but intrinsic and acquired resistance limits their utility. Improved selection of patients that will benefit from these drugs requires predictive biomarkers. We show here that persistent FOXM1 expression following drug treatment is a biomarker of resistance to PI3Kα inhibition in ER+ breast cancer. FOXM1 drives expression of lactate dehydrogenase (LDH) but not hexokinase 2 (HK-II). The downstream metabolic changes can therefore be detected using MRI of LDH-catalyzed hyperpolarized 13C label exchange between pyruvate and lactate but not by positron emission tomography measurements of HK-II-mediated trapping of the glucose analog 2-deoxy-2-[18F]fluorodeoxyglucose. Rapid assessment of treatment response in breast cancer using this imaging method could help identify patients that benefit from PI3Kα inhibition and design drug combinations to counteract the emergence of resistance.
Project description:Interventions that alter cholesterol have differential impacts on hormone receptor positive- and negative-breast cancer risk and prognosis. This implies differential regulation or response to cholesterol within different breast cancer subtypes. We evaluated differences in side-chain hydroxycholesterol and liver X nuclear receptor signalling between Oestrogen Receptor (ER)-positive and ER-negative breast cancers and cell lines. Cell line models of ER-positive and ER-negative disease were treated with Liver X Receptor (LXR) ligands and transcriptional activity assessed using luciferase reporters, qPCR and MTT. Publicly available datasets were mined to identify differences between ER-negative and ER-positive tumours and siRNA was used to suppress candidate regulators. Compared to ER-positive breast cancer, ER-negative breast cancer cells were highly responsive to LXR agonists. In primary disease and cell lines LXRA expression was strongly correlated with its target genes in ER-negative but not ER-positive disease. Expression of LXR's corepressors (NCOR1, NCOR2 and LCOR) was significantly higher in ER-positive disease relative to ER-negative, and their knock-down equalized sensitivity to ligand between subtypes in reporter, gene expression and viability assays. Our data support further evaluation of dietary and pharmacological targeting of cholesterol metabolism as an adjunct to existing therapies for ER-negative and ER-positive breast cancer patients.
Project description:Increased cancer stem cell content during development of resistance to tamoxifen in breast cancer is driven by multiple signals, including Sox2-dependent activation of Wnt signalling. Here, we show that Sox2 increases and estrogen reduces the expression of the transcription factor Sox9. Gain and loss of function assays indicate that Sox9 is implicated in the maintenance of human breast luminal progenitor cells. CRISPR/Cas knockout of Sox9 reduces growth of tamoxifen-resistant breast tumours in vivo. Mechanistically, Sox9 acts downstream of Sox2 to control luminal progenitor cell content and is required for expression of the cancer stem cell marker ALDH1A3 and Wnt signalling activity. Sox9 is elevated in breast cancer patients after endocrine therapy failure. This new regulatory axis highlights the relevance of SOX family transcription factors as potential therapeutic targets in breast cancer.
Project description:Breast cancer-induced activated fibroblasts support tumor progression. However, the role of normal fibroblasts in tumor progression remains controversial. In this study, we used modified patient-derived organoid cultures and demonstrate that constitutively secreted cytokines from normal breast fibroblasts initiate a paracrine signaling mechanism with estrogen receptor-positive (ER+) breast cancer cells, which results in the creation of an interleukin (IL)-1?-enriched microenvironment. We found that this paracrine signaling mechanism is shared between normal and activated fibroblasts. Interestingly, we observed that in reconstructed tumor microenvironment containing autologous ER+ breast cancer cells, activated fibroblasts, and immune cells, tamoxifen is more effective in reducing tumor cell proliferation when this paracrine signaling is blocked. Our findings then suggest that ER+ tumor cells could create a growth-promoting environment without activating stromal fibroblasts and that in breast-conserving surgeries, normal fibroblasts could be a significant modulator of tumor recurrence by enhancing the proliferation of residual breast cancer cells in the tumor-adjacent breast tissue.