Project description:Patients with hematologic malignancies are particularly vulnerable to infections due to underlying humoral and cellular immune dysfunction, cytotoxic chemotherapy regimens, advanced age, and the presence of comorbid conditions. Infection from severe acute respiratory syndrome coronavirus 2, the causative agent of the COVID-19 pandemic, has become a leading cause of death globally and has disproportionally affected this high-risk population. Here, we review the cumulative evidence demonstrating worse outcomes for patients with hematologic malignancies when compared to patients with solid tumors and the general population. We examine risk factors shared with the general population (age, sex, comorbid conditions, and race) and those that are cancer-specific (cytotoxic chemotherapy, progressive disease, and cancer type), all of which confer an increased risk of severe COVID-19. Despite the historical exclusion of cancer patients from COVID-19 therapy trials, we review the emerging evidence that patients with hematologic malignancies benefit from specific treatments such as convalescent plasma. Although COVID-19 vaccines are significantly less effective in this patient population, encouraging results are observed in a subset of these patients after receiving a booster dose.
Project description:COVID-19 has been declared a pandemic by the world health organization. Patients with cancer, and particularly hematologic malignancies may be at higher risk for severe complications due to their malignancy, immune dysregulation, therapy, and associated comorbidities. The oncology community has been proactive in issuing practice guidelines to help optimize management, and limit infection risk and complications from SARS-COV-2. Although hematologic malignancies account for only 10% of all cancers, their management is particularly complex, especially in the time of COVID-19. Screening or early detection of COVID-19 are central for preventative/mitigation strategy, which is the best current strategy in our battle against COVID-19. Herein, we provide an overview of COVID-19 screening strategies and highlight the unique aspects of treating patients with hematologic malignancies.
Project description:Outcomes for patients with hematologic malignancy infected with COVID-19 have not been aggregated. The objective of this study was to perform a systematic review and meta-analysis to estimate the risk of death and other important outcomes for these patients. We searched PubMed and EMBASE up to 20 August 2020 to identify reports of patients with hematologic malignancy and COVID-19. The primary outcome was a pooled mortality estimate, considering all patients and only hospitalized patients. Secondary outcomes included risk of intensive care unit admission and ventilation in hospitalized patients. Subgroup analyses included mortality stratified by age, treatment status, and malignancy subtype. Pooled prevalence, risk ratios (RRs), and 95% confidence intervals (CIs) were calculated using a random-effects model. Thirty-four adult and 5 pediatric studies (3377 patients) from Asia, Europe, and North America were included (14 of 34 adult studies included only hospitalized patients). Risk of death among adult patients was 34% (95% CI, 28-39; N = 3240) in this sample of predominantly hospitalized patients. Patients aged ≥60 years had a significantly higher risk of death than patients <60 years (RR, 1.82; 95% CI, 1.45-2.27; N = 1169). The risk of death in pediatric patients was 4% (95% CI, 1-9; N = 102). RR of death comparing patients with recent systemic anticancer therapy to no treatment was 1.17 (95% CI, 0.83-1.64; N = 736). Adult patients with hematologic malignancy and COVID-19, especially hospitalized patients, have a high risk of dying. Patients ≥60 years have significantly higher mortality; pediatric patients appear to be relatively spared. Recent cancer treatment does not appear to significantly increase the risk of death.
Project description:High throughput sequencing is performed on mRNA isolated from whole blood of adult Covid-19 patients, bacterial coinfection with Covid-19 and healthy controls in a South Indian cohort. Samples were collected from individuals at the time of hospitalization or visit to clinic. The Covid-19 samples are categorized by severeity.
Project description:Initial studies that described the novel coronavirus (COVID-19) reported increased morbidity and mortality in patients with cancer. Of this group, patients with hematologic malignancies (HM) had the highest disease severity and death rates. Subsequent studies have attempted to better describe how COVID-19 affects patients with HM. However, these studies have yielded variable and often contradictory results. We present our single-institution experience with patients with HM who were diagnosed with COVID-19 from March 2020 to March 2021. We report 62 total cases with 10 patients who died during this time. The overall mortality was 16.1%. Mortality during the first two waves of COVID was 27.8% and 25%. Mortality during the third wave of COVID was 10%. The median age of patients was 67 years (range 20-89 years). 55% of patients had lymphoid malignancies and the majority had active disease at the time of diagnosis with COVID-19. 87% of patients had more than one co-morbidity. Important co-morbidities included cardiovascular disease and smoking history. 38.7% of patients had asymptomatic or mild disease, 54.8% required hospitalization, and 17.5% required ICU level care. In patients who required ICU level care, the mortality was 60%.
Project description:Coronavirus disease 2019 (COVID-19) is an illness resulting from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that emerged in late 2019. Patients with cancer, and especially those with hematologic malignancies, may be at especially high risk of adverse outcomes, including mortality resulting from COVID-19 infection. The ASH Research Collaborative COVID-19 Registry for Hematology was developed to study features and outcomes of COVID-19 infection in patients with underlying blood disorders, such as hematologic malignancies. At the time of this report, data from 250 patients with blood cancers from 74 sites around the world had been entered into the registry. The most commonly represented malignancies were acute leukemia (33%), non-Hodgkin lymphoma (27%), and myeloma or amyloidosis (16%). Patients presented with a myriad of symptoms, most frequently fever (73%), cough (67%), dyspnea (50%), and fatigue (40%). Use of COVID-19-directed therapies, such as hydroxychloroquine (n = 76) or azithromycin (n = 59), was common. Overall mortality was 28%. Patients with a physician-estimated prognosis from the underlying hematologic malignancy of <12 months at the time of COVID-19 diagnosis and those with relapsed/refractory disease experienced a higher proportion of moderate/severe COVID-19 disease and death. In some instances, death occurred after a decision was made to forgo intensive care unit admission in favor of a palliative approach. Taken together, these data support the emerging consensus that patients with hematologic malignancies experience significant morbidity and mortality resulting from COVID-19 infection. Batch submissions from sites with high incidence of COVID-19 infection are planned to support future analyses.
Project description:Immunosuppression caused by cancer itself and cytotoxic treatment may pose a challenge to coronavirus disease 2019 (COVID-19) patients with hematological malignancies. Here, we use multidimensional flow cytometry (MFC) to analyze immune profiles in peripheral blood samples of 515 COVID-19 patients at presentation. In 14 cases, deep immunophenotyping of B- and T-cells was performed and six myeloid- and dendritic-cell subsets were FACSorted for transcriptome analysis using RNAseq. Of the 515 patients, 15 and 10 had solid and hematological tumors, respectively. Those with hematological cancer showed significantly higher rates of intensive care (50%) and death (30%) from COVID-19 vs cases with solid cancer and no tumor. Patients with hematological malignancies displayed altered immune profiles with significantly decreased absolute numbers of several subsets of myeloid and lymphoid cells. Myeloid- and dendritic-cell types from hematological cases showed differentially expression of genes coding transcription factors, toll-like receptors and proinflammatory interleukin receptors implicated in response to coronaviruses. The relative distribution of the B-cell compartment was notoriously altered in COVID-19 patients with hematological cancer, and progressively lower numbers of B- and T-cell subsets were observed in deceased cases. Altogether, our results suggest an association between impaired immune responses and poorer outcomes in COVID-19 patients with hematological malignancies.
Project description:BackgroundThe risks associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its associated illness, coronavirus disease 2019 (COVID-19), among patients with a cancer diagnosis have not been fully characterized. This study leverages data from a multi-institutional cohort study, the University of California Cancer COVID Consortium, to evaluate outcomes associated with SARS-CoV-2 infection among patients with cancer.MethodsClinical data were collected from March to November 2020 and included patient demographics, cancer history and treatment, SARS-CoV-2 exposure and testing, and COVID-19 clinical management and outcomes. Multivariate ordinal logistic regression permitting unequal slopes was used to evaluate the impact of demographic, disease, and treatment factors on SARS-CoV-2 related hospitalization, intensive care unit (ICU) admission, and mortality.FindingsAmong all evaluated patients (n = 303), 147 (48%) were male, 118 (29%) were older adults (≥65 years old), and 104 (34%) were non-Hispanic white. A subset (n = 63, 21%) had hematologic malignancies and the remaining had solid tumors. Patients were hospitalized for acute care (n = 79, 26%), ICU-level care (n = 28, 9%), or died (n = 21, 7%) due to COVID-19. Patients with ≥2 comorbidities were more likely to require acute care (odds ratio [OR] 2.09 [95% confidence interval (CI), 1.23-3.55]). Cough was identified as a significant predictor of ICU hospitalization (OR 2.16 [95% CI, 1.03-4.57]). Importantly, mortality was associated with an active cancer diagnosis (OR 3.64 [95% CI, 1.40-9.5]) or advanced age (OR 3.86 [95% CI, 1.2-12.44]).InterpretationThis study observed that patients with active cancer or advanced age are at an increased risk of death from COVID-19. These study observations can inform risk counseling related to COVID-19 for patients with a cancer diagnosis.
Project description:Patients with hematologic malignancies are particularly vulnerable to COVID-19 infections, and upon a pooled data analysis of 24 publications, there is evidence that they have suboptimal antibody responses to COVID-19 vaccination and boosters. To provide them the needed additional protection from COVID-19, it is imperative to achieve a 100% full immunization rate in health care workers and adult caretakers, and to foster research to test higher doses and repeated rounds of COVID-19 vaccines and the use of passive immune prophylaxis and therapy.
Project description:Limited data are available on breakthrough COVID-19 in patients with hematologic malignancy (HM) after anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination. Adult patients with HM, ≥1 dose of anti-SARS-CoV-2 vaccine, and breakthrough COVID-19 between January 2021 and March 2022 were analyzed. A total of 1548 cases were included, mainly lymphoid malignancies (1181 cases, 76%). After viral sequencing in 753 cases (49%), the Omicron variant was prevalent (517, 68.7%). Most of the patients received ≤2 vaccine doses before COVID-19 (1419, 91%), mostly mRNA-based (1377, 89%). Overall, 906 patients (59%) received COVID-19-specific treatment. After 30-day follow-up from COVID-19 diagnosis, 143 patients (9%) died. The mortality rate in patients with the Omicron variant was 7.9%, comparable to other variants, with a significantly lower 30-day mortality rate than in the prevaccine era (31%). In the univariable analysis, older age (P < .001), active HM (P < .001), and severe and critical COVID-19 (P = .007 and P < .001, respectively) were associated with mortality. Conversely, patients receiving monoclonal antibodies, even for severe or critical COVID-19, had a lower mortality rate (P < .001). In the multivariable model, older age, active disease, critical COVID-19, and 2-3 comorbidities were correlated with a higher mortality, whereas monoclonal antibody administration, alone (P < .001) or combined with antivirals (P = .009), was protective. Although mortality is significantly lower than in the prevaccination era, breakthrough COVID-19 in HM is still associated with considerable mortality. Death rate was lower in patients who received monoclonal antibodies, alone or in combination with antivirals.