Project description:Deoxyribonucleotides are DNA building blocks and are produced de novo by reduction of ribose to deoxyribose. This reduction is catalyzed by ribonucleotide reductase (RNR), a heterodimeric tetramer enzyme in mammalian cells, having one of two free radical-containing subunits called R2 and p53R2. R2 is S-phase specific and used for DNA replication, whereas p53R2 functions in DNA repair and mitochondrial DNA synthesis. The larger RNR subunit, R1, has catalytically active cysteine thiols in its buried active site and a C-terminal swinging arm, with a Cys-Leu-Met-Cys sequence suggested to act as a shuttle dithiol/disulfide for electron transport. After each catalytic cycle the active site contains a disulfide, which has to be reduced for turnover. Thioredoxin (Trx) and glutaredoxin (Grx) systems have been implicated as electron donors for the RNR disulfide reduction via the swinging arm. Using mouse R1-R2 and R1-p53R2 complexes, we found here that the catalytic efficiency of the GSH-Grx system is 4-6 times higher than that of the Trx1 system. For both complexes, the V max values for Grx are strongly depended on GSH concentrations. The GSH disulfide resulting from the Grx reaction was reduced by NADPH and GSH reductase and this enzyme was essential because reaction with GSH alone yielded only little activity. These results indicate that C-terminal shuttle dithiols of mammalian R1 have a crucial catalytic role and that the GSH-Grx system favors the R1-p53R2 enzyme for DNA replication in hypoxic conditions, mitochondrial DNA synthesis, and in DNA repair outside the S-phase.
Project description:Abstract Aging in older humans is associated with impaired mitochondrial fatty-acid oxidation (MFO), muscle weakness, cognitive decline and inflammation, but contributing mechanisms are not well understood and effective interventions are lacking. We proposed a unifying hypothesis that deficiency of the endogenous antioxidant protein Glutathione predisposes to all of these defects which are reversible on correcting Glutathione deficiency. To test our hypothesis, we conducted a 36-week open label clinical trial (NCT02348762) in 8 older humans (73.8 ± 1y) studied before and after 24-weeks of supplementation with N-acetylcysteine and Glycine (NAC-Gly, as Glutathione precursor amino-acids), and again 12-weeks after stopping supplements to determine washout changes. 8 young humans (25.8 ± 1y) served as controls, and were not supplemented. Study measures were intracellular Glutathione, fasted MFO (calorimetry), physical function (gait-speed, grip-strength, chair-rise and 6-minute walk tests), cognition (MoCA, Montreal Cognitive-Assessment; trail-making tests; verbal-fluency test; symbol-digital modalities test), plasma oxidative-stress (F2-isoprostanes), inflammation (Interleukein-6; Tumor Necrosis Factor alpha; C-reactive Protein) and body composition (DEXA-scan). Compared to young-controls, older humans had significantly (P<0.05 to P<0.01) impaired MFO, physical and cognitive decline, and higher inflammation and body fat. After 24-weeks of supplementation outcome measures improved significantly (P<0.05 to P<0.01), with complete normalization of fMFO (P<0.001), gait-speed (strength, P<0.001) and MoCA (cognition, P<0.01) to young controls. Accrued benefits declined on stopping supplementation. These novel discoveries provide a proof-of-concept for the exciting possibility that supplementing NAC-Gly in older humans could offer a novel nutritional approach to reverse age-related abnormalities in mitochondrial energetics, physical function, cognition, inflammation and body composition, and thereby ‘reverse aging’.
Project description:In the fetal mouse testis, PIWI Interacting RNAs (piRNAs) guide PIWI proteins to silence transposons, but after birth, most post-pubertal pachytene piRNAs map to genome uniquely and are thought to regulate genes required for male fertility. In human males, the developmental classes, precise genomic origins, and transcriptional regulation of post-natal piRNAs remain undefined. Here, we demarcate the genes and transcripts that produce post-natal piRNAs in human juvenile and adult testes. As in mouse, A‑MYB in humans drives transcription of both pachytene piRNA precursor transcripts and the mRNAs encoding piRNA biogenesis factors. Although human piRNA genes are syntenic to those in other placental mammals, their sequences are poorly conserved. In fact, pachytene piRNA loci are rapidly diverging even among modern humans. Our findings suggest that during mammalian evolution, pachytene piRNA genes are under fewer selective constraints. We speculate that pachytene piRNA diversity may provide a hitherto unrecognized driver of reproductive isolation.
Project description:Glutathione reductase (Gsr) catalyzes the reduction of glutathione disulfide to glutathione, which plays an important role in redox regulation. We have previously shown that Gsr facilitates neutrophil bactericidal activities and is pivotal for host defense against bacterial pathogens. However, it is unclear whether Gsr is required for immune defense against fungal pathogens. It is also unclear whether Gsr plays a role in immunological functions outside of neutrophils during immune defense. In this study, we report that Gsr-/- mice exhibited markedly increased susceptibility to Candida albicans challenge. Upon C. albicans infection, Gsr-/- mice exhibited dramatically increased fungal burden in the kidneys, cytokine and chemokine storm, striking neutrophil infiltration, histological abnormalities in both the kidneys and heart, and substantially elevated mortality. Large fungal foci surrounded by massive numbers of neutrophils were detected outside of the glomeruli in the kidneys of Gsr -/- mice but were not found in wild-type mice. Examination of the neutrophils and macrophages of Gsr-/- mice revealed several defects. Gsr -/- neutrophils exhibited compromised phagocytosis, attenuated respiratory burst, and impaired fungicidal activity in vitro. Moreover, upon C. albicans stimulation, Gsr -/- macrophages produced increased levels of inflammatory cytokines and exhibited elevated p38 and JNK activities, at least in part, because of lower MAPK phosphatase (Mkp)-1 activity and greater Syk activity. Thus, Gsr-mediated redox regulation is crucial for fungal clearance by neutrophils and the proper control of the inflammatory response by macrophages during host defense against fungal challenge.
Project description:Cells evolved robust homeostatic mechanisms to protect against oxidation or alkylation by electrophilic species. Glutathione (GSH) is the most abundant intracellular thiol, protects cellular components from oxidation and is maintained in a reduced state by glutathione reductase (GR). Nitro oleic acid (NO2-OA) is an electrophilic fatty acid formed under digestive and inflammatory conditions that both reacts with GSH and induces its synthesis upon activation of Nrf2 signaling. The effects of NO2-OA on intracellular GSH homeostasis were evaluated. In addition to upregulation of GSH biosynthesis, we observed that NO2-OA increased intracellular GSSG in an oxidative stress-independent manner. NO2-OA directly inhibited GR in vitro by covalent modification of the catalytic Cys61, with kon of (3.45 ± 0.04) × 103 M-1 s-1, koff of (4.4 ± 0.4) × 10-4 s-1, and Keq of (1.3 ± 0.1) × 10-7 M. Akin to NO2-OA, the electrophilic Nrf2 activators bardoxolone-imidazole (CDDO-Im), bardoxolone-methyl (CDDO-Me) and dimethyl fumarate (DMF) also upregulated GSH biosynthesis while promoting GSSG accumulation, but without directly inhibiting GR activity. In vitro assays in which GR was treated with increasing GSH concentrations and GSH depletion experiments in cells revealed that GR activity is finely regulated via product inhibition, an observation further supported by theoretical (kinetic modeling of cellular GSSG:GSH levels) approaches. Together, these results describe two independent mechanisms by which electrophiles modulate the GSH/GSSG couple, and provide a novel conceptual framework to interpret experimentally determined values of GSH and GSSG.
Project description:Selective suicide inhibitors represent a seductively attractive approach for inactivation of therapeutically relevant enzymes since they are generally devoid of off-target toxicity in vivo. While most suicide inhibitors are converted to reactive species at enzyme active sites, theoretically bioactivation can also occur in ectopic (secondary) sites that have no known function. Here, we report an example of such an "ectopic suicide inhibition", an unprecedented bioactivation mechanism of a suicide inhibitor carried out by a non-catalytic site of thioredoxin glutathione reductase (TGR). TGR is a promising drug target to treat schistosomiasis, a devastating human parasitic disease. Utilizing hits selected from a high throughput screening campaign, time-resolved X-ray crystallography, molecular dynamics, mass spectrometry, molecular modeling, protein mutagenesis and functional studies, we find that 2-naphtholmethylamino derivatives bound to this novel ectopic site of Schistosoma mansoni (Sm)TGR are transformed to covalent modifiers and react with its mobile selenocysteine-containing C-terminal arm. In particular, one 2-naphtholmethylamino compound is able to specifically induce the pro-oxidant activity in the inhibited enzyme. Since some 2-naphtholmethylamino analogues show worm killing activity and the ectopic site is not conserved in human orthologues, a general approach to development of novel and selective anti-parasitic therapeutics against schistosoma is proposed.
Project description:Summary In organisms from bacteria to mammals, NADPH oxidase (NOX) catalyzes the production of beneficial reactive oxygen species (ROS) such as superoxide (O2−). However, our previous research implicated glutathione reductase (GR), a canonical antioxidant enzyme, as a source of extracellular superoxide in the marine diatom Thalassiosira oceanica. Here, we expressed and characterized the two GR isoforms of T. oceanica. Both coupled the oxidation of NADPH, the native electron donor, to oxygen reduction, giving rise to superoxide in the absence of glutathione disulfide, the native electron acceptor. Superoxide production by ToGR1 exhibited similar kinetics as representative NOX enzymes, and inhibition assays agreed with prior organismal studies, supporting a physiological role. ToGR is similar to GR from human, yeast, and bacteria, suggesting that NOX-like ROS production by GR could be widespread. Yet unlike NOX, GR-mediated ROS production is independent of iron, which may provide an advantageous way of making ROS under micronutrient stress. Graphical abstract Highlights • Glutathione reductase expressed from a microbial phototroph is found to produce ROS• This promiscuous reaction shows similar kinetics and inhibition as NOX-derived ROS• The GR pathway of ROS production has cellular benefits under physiological stress• GR may function similarly to NOX in other taxa, providing metabolic versatility Earth sciences; Oceanography; Microbiology; Biocatalysis; Bioengineering
Project description:The Neanderthal and Denisovan genomes enabled the discovery of sequences that differ between modern and archaic humans, the majority of which are noncoding. However, our understanding of the regulatory consequences of these differences remains limited, in part due to the decay of regulatory marks in ancient samples. Here, we used a massively parallel reporter assay in embryonic stem cells, neural progenitor cells and bone osteoblasts to investigate the regulatory effects of the 14,042 single-nucleotide modern human-specific variants. Overall, 1,791 (13%) of sequences containing these variants showed active regulatory activity, and 407 (23%) of these drove differential expression between human groups. Differentially active sequences were associated with divergent transcription factor binding motifs, and with genes enriched for vocal tract and brain anatomy and function. This work provides insight into the regulatory function of variants that emerged along the modern human lineage and the recent evolution of human gene expression.
Project description:Statins are inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol biosynthesis, and have been clinically used to treat cardiovascular disease. However, a paradoxical increase of reductase protein following statin treatment may attenuate the effect and increase the side effects. Here we present a previously unexplored strategy to alleviate statin-induced reductase accumulation by inducing its degradation. Inspired by the observations that cholesterol intermediates trigger reductase degradation, we identify a potent degrader, namely Cmpd 81, through structure-activity relationship analysis of sterol analogs. Cmpd 81 stimulates ubiquitination and degradation of reductase in an Insig-dependent manner, thus dramatically reducing protein accumulation induced by various statins. Cmpd 81 can act alone or synergistically with statin to lower cholesterol and reduce atherosclerotic plaques in mice. Collectively, our work suggests that inducing reductase degradation by Cmpd 81 or similar chemicals alone or in combination with statin therapy can be a promising strategy for treating cardiovascular disease.
Project description:Ribonucleotide reductases (RNRs) employ a complex radical-based mechanism during nucleotide reduction involving multiple active site cysteines that both activate the substrate and reduce it. Using an engineered allo-tRNA, we substituted two active site cysteines with distinct function in the class Ia RNR of Escherichia coli for selenocysteine (U) via amber codon suppression, with efficiency and selectivity enabling biochemical and biophysical studies. Examination of the interactions of the C439U ?2 mutant protein with nucleotide substrates and the cognate ?2 subunit demonstrates that the endogenous Y122• of ?2 is reduced under turnover conditions, presumably through radical transfer to form a transient U439• species. This putative U439• species is formed in a kinetically competent fashion but is incapable of initiating nucleotide reduction via 3'-H abstraction. An analogous C225U ?2 protein is also capable of radical transfer from Y122•, but the radical-based substrate chemistry partitions between turnover and stalled reduction akin to the reactivity of mechanism-based inhibitors of RNR. The results collectively demonstrate the essential role of cysteine redox chemistry in the class I RNRs and establish a new tool for investigating thiyl radical reactivity in biology.