Project description:Predicting whether a lung nodule will grow, remain stable or regress over time, especially early in its follow-up, would help doctors prescribe personalized treatments and better surgical planning. However, the multifactorial nature of lung tumour progression hampers the identification of growth patterns. In this work, we propose a deep hierarchical generative and probabilistic network that, given an initial image of the nodule, predicts whether it will grow, quantifies its future size and provides its expected semantic appearance at a future time. Unlike previous solutions, our approach also estimates the uncertainty in the predictions from the intrinsic noise in medical images and the inter-observer variability in the annotations. The evaluation of this method on an independent test set reported a future tumour growth size mean absolute error of 1.74 mm, a nodule segmentation Dice's coefficient of 78% and a tumour growth accuracy of 84% on predictions made up to 24 months ahead. Due to the lack of similar methods for providing future lung tumour growth predictions, along with their associated uncertainty, we adapted equivalent deterministic and alternative generative networks (i.e., probabilistic U-Net, Bayesian test dropout and Pix2Pix). Our method outperformed all these methods, corroborating the adequacy of our approach.
Project description:It has been shown that deep neural networks are powerful and flexible models that can be applied on fMRI data with superb representation ability over traditional methods. However, a challenge of neural network architecture design has also attracted attention: due to the high dimension of fMRI volume images, the manual process of network model design is very time-consuming and not optimal. To tackle this problem, we proposed an unsupervised neural architecture search (NAS) framework on a deep belief network (DBN) that models volumetric fMRI data, named NAS-DBN. The NAS-DBN framework is based on Particle Swarm Optimization (PSO) where the swarms of neural architectures can evolve and converge to a feasible optimal solution. The experiments showed that the proposed NAS-DBN framework can quickly find a robust architecture of DBN, yielding a hierarchy organization of functional brain networks (FBNs) and temporal responses. Compared with 3 manually designed DBNs, the proposed NAS-DBN has the lowest testing loss of 0.0197, suggesting an overall performance improvement of up to 47.9 %. For each task, the NAS-DBN identified 260 FBNs, including task-specific FBNs and resting state networks (RSN), which have high overlap rates to general linear model (GLM) derived templates and independent component analysis (ICA) derived RSN templates. The average overlap rate of NAS-DBN to GLM on 20 task-specific FBNs is as high as 0.536, indicating a performance improvement of up to 63.9 % in respect of network modeling. Besides, we showed that the NAS-DBN can simultaneously generate temporal responses that resemble the task designs very well, and it was observed that widespread overlaps between FBNs from different layers of NAS-DBN model form a hierarchical organization of FBNs. Our NAS-DBN framework contributes an effective, unsupervised NAS method for modeling volumetric task fMRI data.
Project description:Accurate prediction of postoperative complications can inform shared decisions regarding prognosis, preoperative risk-reduction, and postoperative resource use. We hypothesized that multi-task deep learning models would outperform conventional machine learning models in predicting postoperative complications, and that integrating high-resolution intraoperative physiological time series would result in more granular and personalized health representations that would improve prognostication compared to preoperative predictions. In a longitudinal cohort study of 56,242 patients undergoing 67,481 inpatient surgical procedures at a university medical center, we compared deep learning models with random forests and XGBoost for predicting nine common postoperative complications using preoperative, intraoperative, and perioperative patient data. Our study indicated several significant results across experimental settings that suggest the utility of deep learning for capturing more precise representations of patient health for augmented surgical decision support. Multi-task learning improved efficiency by reducing computational resources without compromising predictive performance. Integrated gradients interpretability mechanisms identified potentially modifiable risk factors for each complication. Monte Carlo dropout methods provided a quantitative measure of prediction uncertainty that has the potential to enhance clinical trust. Multi-task learning, interpretability mechanisms, and uncertainty metrics demonstrated potential to facilitate effective clinical implementation.
Project description:Familiarity of marketing stimuli may affect consumer behaviour at a peri-perceptual processing level. The current study introduces a method for deep learning of electroencephalogram (EEG) data using a spiking neural network (SNN) approach that reveals the complexity of peri-perceptual processes of familiarity. The method is applied to data from 20 participants viewing familiar and unfamiliar logos. The results support the potential of SNN models as novel tools in the exploration of peri-perceptual mechanisms that respond differentially to familiar and unfamiliar stimuli. Specifically, the activation pattern of the time-locked response identified by the proposed SNN model at approximately 200 milliseconds post-stimulus suggests greater connectivity and more widespread dynamic spatio-temporal patterns for familiar than unfamiliar logos. The proposed SNN approach can be applied to study other peri-perceptual or perceptual brain processes in cognitive and computational neuroscience.
Project description:Effort-aware just-in-time (JIT) defect prediction is to rank source code changes based on the likelihood of detects as well as the effort to inspect such changes. Accurate defect prediction algorithms help to find more defects with limited effort. To improve the accuracy of defect prediction, in this paper, we propose a deep learning based approach for effort-aware just-in-time defect prediction. The key idea of the proposed approach is that neural network and deep learning could be exploited to select useful features for defect prediction because they have been proved excellent at selecting useful features for classification and regression. First, we preprocess ten numerical metrics of code changes, and then feed them to a neural network whose output indicates how likely the code change under test contains bugs. Second, we compute the benefit cost ratio for each code change by dividing the likelihood by its size. Finally, we rank code changes according to their benefit cost ratio. Evaluation results on a well-known data set suggest that the proposed approach outperforms the state-of-the-art approaches on each of the subject projects. It improves the average recall and popt by 15.6% and 8.1%, respectively.
Project description:Preeclampsia (PE) is a hypertensive complication affecting 8-10% of US pregnancies annually. While there is no cure for PE, aspirin may reduce complications for those at high risk for PE. Furthermore, PE disproportionately affects racial minorities, with a higher burden of morbidity and mortality. Previous studies have shown early prediction of PE would allow for prevention. We approached the prediction of PE using a new method based on a cost-sensitive deep neural network (CSDNN) by considering the severe imbalance and sparse nature of the data, as well as racial disparities. We validated our model using large extant rich data sources that represent a diverse cohort of minority populations in the US. These include Texas Public Use Data Files (PUDF), Oklahoma PUDF, and the Magee Obstetric Medical and Infant (MOMI) databases. We identified the most influential clinical and demographic features (predictor variables) relevant to PE for both general populations and smaller racial groups. We also investigated the effectiveness of multiple network architectures using three hyperparameter optimization algorithms: Bayesian optimization, Hyperband, and random search. Our proposed models equipped with focal loss function yield superior and reliable prediction performance compared with the state-of-the-art techniques with an average area under the curve (AUC) of 66.3% and 63.5% for the Texas and Oklahoma PUDF respectively, while the CSDNN model with weighted cross-entropy loss function outperforms with an AUC of 76.5% for the MOMI data. Furthermore, our CSDNN model equipped with focal loss function leads to an AUC of 66.7% for Texas African American and 57.1% for Native American. The best results are obtained with 62.3% AUC with CSDNN with weighted cross-entropy loss function for Oklahoma African American, 58% AUC with DNN and balanced batch for Oklahoma Native American, and 72.4% AUC using either CSDNN with weighted cross-entropy loss function or CSDNN with focal loss with balanced batch method for MOMI African American dataset. Our results provide the first evidence of the predictive power of clinical databases for PE prediction among minority populations.
Project description:An indirect adaptive controller is developed for a class of multiple-input multiple-output (MIMO) nonlinear systems with unknown uncertainties. This control system is comprised of an L 1 adaptive controller and an auxiliary neural network (NN) compensation controller. The L 1 adaptive controller has guaranteed transient response in addition to stable tracking. In this architecture, a low-pass filter is adopted to guarantee fast adaptive rate without generating high-frequency oscillations in control signals. The auxiliary compensation controller is designed to approximate the unknown nonlinear functions by MIMO RBF neural networks to suppress the influence of uncertainties. NN weights are tuned on-line with no prior training and the project operator ensures the weights bounded. The global stability of the closed-system is derived based on the Lyapunov function. Numerical simulations of an MIMO system coupled with nonlinear uncertainties are used to illustrate the practical potential of our theoretical results.
Project description:Humans globally are reaping the benefits of longer lives. Yet, longer life spans also require engaging with consequential but often uncertain decisions well into old age. Previous research has yielded mixed findings with regards to life span differences in how individuals make decisions under uncertainty. One factor contributing to the heterogeneity of findings is the diversity of paradigms that cover different aspects of uncertainty and tap into different cognitive and affective mechanisms. In this study, 175 participants (53.14% females, mean age = 44.9 years, SD = 19.0, age range = 16 to 81) completed functional neuroimaging versions of two prominent paradigms in this area, the Balloon Analogue Risk Task and the Delay Discounting Task. Guided by neurobiological accounts of age-related changes in decision-making under uncertainty, we examined age effects on neural activation differences in decision-relevant brain structures, and compared these across multiple contrasts for the two paradigms using specification curve analysis. In line with theoretical predictions, we find age differences in nucleus accumbens, anterior insula, and medial prefrontal cortex, but the results vary across paradigm and contrasts. Our results are in line with existing theories of age differences in decision making and their neural substrates, yet also suggest the need for a broader research agenda that considers how both individual and task characteristics determine the way humans deal with uncertainty.
Project description:The wiring diagram of the human brain can be described in terms of graph measures that characterize structural regularities. These measures require an estimate of whole-brain structural connectivity for which one may resort to deterministic or thresholded probabilistic streamlining procedures. While these procedures have provided important insights about the characteristics of human brain networks, they ultimately rely on unwarranted assumptions such as those of noise-free data or the use of an arbitrary threshold. Therefore, resulting structural connectivity estimates as well as derived graph measures fail to fully take into account the inherent uncertainty in the structural estimate. In this paper, we illustrate an easy way of obtaining posterior distributions over graph metrics using Bayesian inference. It is shown that this posterior distribution can be used to quantify uncertainty about graph-theoretical measures at the single subject level, thereby providing a more nuanced view of the graph-theoretical properties of human brain connectivity. We refer to this model-based approach to connectivity analysis as Bayesian connectomics.