Project description:BACKGROUNDWhile B cell depletion is associated with attenuated antibody responses to SARS-CoV-2 mRNA vaccination, responses vary among individuals. Thus, elucidating the factors that affect immune responses after repeated vaccination is an important clinical need.METHODSWe evaluated the quality and magnitude of the T cell, B cell, antibody, and cytokine responses to a third dose of BNT162b2 or mRNA-1273 mRNA vaccine in patients with B cell depletion.RESULTSIn contrast with control individuals (n = 10), most patients on anti-CD20 therapy (n = 48) did not demonstrate an increase in spike-specific B cells or antibodies after a third dose of vaccine. A third vaccine elicited significantly increased frequencies of spike-specific non-naive T cells. A small subset of B cell-depleted individuals effectively produced spike-specific antibodies, and logistic regression models identified time since last anti-CD20 treatment and lower cumulative exposure to anti-CD20 mAbs as predictors of those having a serologic response. B cell-depleted patients who mounted an antibody response to 3 vaccine doses had persistent humoral immunity 6 months later.CONCLUSIONThese results demonstrate that serial vaccination strategies can be effective for a subset of B cell-depleted patients.FUNDINGThe NIH (R25 NS079193, P01 AI073748, U24 AI11867, R01 AI22220, UM 1HG009390, P01 AI039671, P50 CA121974, R01 CA227473, U01CA260507, 75N93019C00065, K24 AG042489), NIH HIPC Consortium (U19 AI089992), the National Multiple Sclerosis Society (CA 1061-A-18, RG-1802-30153), the Nancy Taylor Foundation for Chronic Diseases, Erase MS, and the Claude D. Pepper Older Americans Independence Center at Yale (P30 AG21342).
Project description:BackgroundSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination is shown to prevent severe illness and death in hemodialysis (HD) patients, but the immune response to vaccines is reduced in this population. This study compared SARS-CoV-2 spike protein antibody titers between HD patients and healthy controls in Japan for up to 6 months following vaccination.MethodsA multi-institutional retrospective study at five clinics in Japan was conducted using 412 HD patients and 156 healthy controls who received two doses of the BNT162b2 (Pfizer-BioNTech) mRNA vaccine. Anti-SARS-CoV-2 spike protein S1 IgG antibody titers were measured at 1, 3, and 6 months after the second dose. The attenuation speed was calculated as slope (i.e., -β) using a linear mixed-effects model toward the log-transformed antibody titers.ResultsThe HD group had significantly lower month 1 antibody titers (Ab-titer-1) than the controls, and these remained lower through month 6 (95% CI: 2617.1 (1296.7, 5240.8) vs. 7285.4 (4403.9, 11,000.0) AU/mL at Ab-titer-1, and 353.4 (178.4, 656.3) vs. 812.0 (498.3, 1342.7) AU/mL at Ab-titer-6 (p < 0.001, respectively)). Lower log Ab-titer-1 levels in the HD group were significantly associated with a lower log Ab-titer-6 (0.90 [0.83, 0.97], p < 0.001). The -β values in the HD patients and healthy controls were -4.7 ± 1.1 and -4.7 ± 1.4 (year-1), respectively.ConclusionSARS-CoV-2 spike protein antibody titers were significantly lower in HD patients than in healthy controls at 1 (peak) and 6 months after the second vaccination. Low peak antibody titers contributed to low 6-month antibody titers.
Project description:The double dose regimen for mRNA vaccines against SARS-CoV-2 presents both a hope and a challenge for global efforts to curb the COVID-19 pandemic. With supply chain logistics impacting the rollout of population-scale vaccination programs, increasing attention has turned to the potential efficacy of single versus double dose vaccine administration for select individuals. To this end, we examined response to Pfizer-BioNTech mRNA vaccine in a large cohort of healthcare workers including those with versus without prior COVID-19 infection. For all participants, we quantified circulating levels of SARS-CoV-2 anti-spike (S) protein IgG at baseline prior to vaccine, after vaccine dose 1, and after vaccine dose 2. We observed that the anti-S IgG antibody response following a single vaccine dose in persons who had recovered from confirmed prior COVID-19 infection was similar to the antibody response following two doses of vaccine in persons without prior infection (P≥0.58). Patterns were similar for the post-vaccine symptoms experienced by infection recovered persons following their first dose compared to the symptoms experienced by infection naïve persons following their second dose (P=0.66). These results support the premise that a single dose of mRNA vaccine could provoke in COVID-19 recovered individuals a level of immunity that is comparable to that seen in infection naïve persons following a double dose regimen. Additional studies are needed to validate our findings, which could allow for public health programs to expand the reach of population wide vaccination efforts.
Project description:Vaccination against SARS-CoV-2 has become the main method of reducing mortality and severity of COVID-19. This work aims to study the evolution of the cellular and humoral responses conferred by two mRNA vaccines after two doses against SARS-CoV-2. On days 30 and 240 after the second dose of both vaccines, the anti-S antibodies in plasma were evaluated from 82 volunteers vaccinated with BNT162b2 and 68 vaccinated with mRNA-1273. Peripheral blood was stimulated with peptides encompassing the entire SARS-CoV-2 Spike sequence. IgG Anti-S antibodies (humoral) were quantified on plasma, and inflammatory cytokines (cellular) were measured after stimulation. We observed a higher response (both humoral and cellular) with the mRNA-1273 vaccine. Stratifying by age and gender, differences between vaccines were observed, especially in women under 48 and men over 48 years old. Therefore, this work could help to set up a vaccination strategy that could be applied to confer maximum immunity.
Project description:Humoral immunity confers protection against COVID-19. The longevity of antibody responses after receiving an inactivated vaccine in individuals with previous SARS-CoV-2 infection is unclear. Plasma samples were collected from 58 individuals with previous SARS-CoV-2 infection and 25 healthy donors (HDs) who had been vaccinated with an inactivated vaccine. The neutralizing antibodies (NAbs) and S1 domain-specific antibodies against the SARS-CoV-2 wild-type and Omicron strains and nucleoside protein (NP)-specific antibodies were measured using a chemiluminescent immunoassay. Statistical analysis was performed using clinical variables and antibodies at different timepoints after SARS-CoV-2 vaccination. NAbs targeting the wild-type or Omicron strain were detected in individuals with previous SARS-CoV-2 infection at 12 months after infection (wild-type: 81%, geometric mean (GM): 20.3 AU/mL; Omicron: 44%, GM: 9.4 AU/mL), and vaccination provided further enhancement of these antibody levels (wild-type: 98%, GM: 53.3 AU/mL; Omicron: 75%, GM: 27.8 AU/mL, at 3 months after vaccination), which were significantly higher than those in HDs receiving a third dose of inactivated vaccine (wild-type: 85%, GM: 33.6 AU/mL; Omicron: 45%, GM: 11.5 AU/mL). The level of NAbs in individuals with previous infection plateaued 6 months after vaccination, but the NAb levels in HDs declined continuously. NAb levels in individuals with previous infection at 3 months post-vaccination were strongly correlated with those at 6 months post-vaccination, and weakly correlated with those before vaccination. NAb levels declined substantially in most individuals, and the rate of antibody decay was negatively correlated with the neutrophil-to-lymphocyte ratio in the blood at discharge. These results suggest that the inactivated vaccine induced robust and durable NAb responses in individuals with previous infection up to 9 months after vaccination.
Project description:Severe acute respiratory syndrome coronovirus-2 (SARS-CoV-2) is the cause of the coronavirus disease 2019 (COVID-19) pandemic. Vaccination is considered the core approach to containing the pandemic. There is currently insufficient evidence on the efficacy of these vaccines in immunosuppressed inflammatory bowel disease (IBD) patients. The aim of this study was to investigate the humoral response in immunosuppressed IBD patients after COVID-19 mRNA vaccination. In this prospective study, IgG antibody levels (AB) against the SARS-CoV-2 receptor-binding domain (spike-protein) were quantitatively determined. For assessing the potential neutralizing capacity, a SARS-CoV-2 surrogate neutralization test (sVNT) was employed in IBD patients (n = 95) and healthy controls (n = 38). Sera were examined prior to the first/second vaccination and 3/6 months after second vaccination. Patients showed lower sVNT (%) and IgG-S (AU/mL) AB both before the second vaccination (sVNT p < 0.001; AB p < 0.001) and 3 (sVNT p = 0.002; AB p = 0.001) and 6 months (sVNT p = 0.062; AB p = 0.061) after the second vaccination. Although seroconversion rates (sVNT, IgG-S) did not differ between the two groups 3 months after second vaccination, a significant difference was seen 6 months after second vaccination (sVNT p = 0.045). Before and three months after the second vaccination, patients treated with anti-tumor necrosis factor (TNF) agents showed significantly lower AB than healthy subjects. In conclusion, an early booster shot vaccination should be discussed for IBD patients on anti-TNF therapy.
Project description:BackgroundSome studies have shown an attenuated immune response in haemodialysis patients after vaccination. The present study examines the humoral response after mRNA vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in a large population of haemodialysis patients from different outpatient dialysis centres.MethodsWe retrospectively assessed antibodies against SARS-CoV-2 spike protein and nucleocapsid protein (chemiluminescence immunoassays, Roche diagnostics) 3-6 weeks after the second mRNA vaccine dose in 179 maintenance haemodialysis and 70 non-dialysis patients (control cohort). Differences in anti-SARS-CoV-2 spike protein titers were statistically analysed with respect to patient-relevant factors, including age, gender, previous coronavirus disease 2019 (COVID-19) infection, systemic immunosuppressive therapy and time on dialysis.ResultsWe found a favourable, but profoundly lower SARS-CoV-2 spike protein antibody response in comparison with a non-dialysis cohort (median 253.5 versus 1756 U/mL, P < 0.001). In multivariate analysis, previous COVID-19 infection (P < 0.001) and female gender were associated with a significantly higher vaccine response (P = 0.006) in haemodialysis patients, while there was a significant inverse correlation with increasing patient age and systemic immunosuppression (P < 0.001). There was no statistically significant correlation between the antibody titer and time on dialysis. Immune response in haemodialysis patients with a previous COVID-19 infection led to substantially higher antibody titers that were equal to those of vaccinated non-dialysis individuals with previous infection.ConclusionWe strongly argue in favour of regular antibody testing after COVID-19 vaccination in haemodialysis patients. Further studies should elucidate the utility of booster vaccinations to foster a stronger and persistent antibody response.
Project description:BackgroundLimited knowledge exists regarding antibody affinity maturation following mRNA vaccination in naïve vs. COVID-19 recovered individuals and potential sex differences.MethodsWe elucidated post-vaccination antibody profiles of 69 naïve and 17 COVID-19 convalescent adults using pseudovirus neutralization assay (PsVNA) covering SARS-CoV-2 WA-1, variants of concern (VOCs) and variants of interest (VOIs). Surface Plasmon Resonance (SPR) was used to measure antibody affinity against prefusion spike and receptor binding domain (RBD) and RBD mutants.FindingsHigher neutralizing antibodies were observed in convalescent vs. naïve adults against, WA-1, VOCs, and VOIs. Antibody binding to RBD and RBD mutants showed lower binding of post-vaccination sera from naïve compared with convalescent individuals. Moreover, we observed early antibody affinity maturation in convalescent individuals after one vaccine dose and higher antibody affinity after two doses compared with the naïve group. Among the naïve participants, antibody affinity against the SARS-CoV-2 prefusion spike was significantly higher for males than females even though there were no difference in neutralization titers between sexes.InterpretationThis study demonstrates the impact of prior infection on vaccine-induced antibody affinity maturation and difference in antibody affinity between males and females. Further studies are needed to determine whether antibody affinity may contribute to correlates of protection against SARS-CoV-2 and its variants.FundingThe antibody characterization work described in this manuscript was supported by FDA's Medical Countermeasures Initiative (MCMi) grant #OCET 2021-1565 to S.K and intramural FDA-CBER COVID-19 supplemental funds. The SPARTA program was supported by the National Institute of Allergy and Infectious Diseases (NIAID), U.S. National Institutes of Health (NIH), Department of Health and Human Services contract 75N93019C00052, and the University of Georgia (US) grant UGA-001. T.M.R is also supported by the Georgia Research Alliance (US) grant GRA-001. The CTRU was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health under Award Number UL1TR002378.
Project description:Feedback inhibition of humoral immunity by antibodies was first documented in 19091. Subsequent studies showed that, depending on the context, antibodies can enhance or inhibit immune responses2,3. However, little is known about how pre-existing antibodies influence the development of memory B cells. Here we examined the memory B cell response in individuals who received two high-affinity anti-SARS-CoV-2 monoclonal antibodies and subsequently two doses of an mRNA vaccine4-8. We found that the recipients of the monoclonal antibodies produced antigen-binding and neutralizing titres that were only fractionally lower compared than in control individuals. However, the memory B cells of the individuals who received the monoclonal antibodies differed from those of control individuals in that they predominantly expressed low-affinity IgM antibodies that carried small numbers of somatic mutations and showed altered receptor binding domain (RBD) target specificity, consistent with epitope masking. Moreover, only 1 out of 77 anti-RBD memory antibodies tested neutralized the virus. The mechanism underlying these findings was examined in experiments in mice that showed that germinal centres formed in the presence of the same antibodies were dominated by low-affinity B cells. Our results indicate that pre-existing high-affinity antibodies bias germinal centre and memory B cell selection through two distinct mechanisms: (1) by lowering the activation threshold for B cells, thereby permitting abundant lower-affinity clones to participate in the immune response; and (2) through direct masking of their cognate epitopes. This may in part explain the shifting target profile of memory antibodies elicited by booster vaccinations9.