Project description:Adherence to proven, effective medications remains low, resulting in high rates of clinical complications, hospital readmissions, and death. The use of technology to identify patients at risk and to target interventions for poor adherence has increased. This review focuses on research that tests these emerging technologies and evaluates the effect of technology-based adherence interventions on cardiovascular outcomes.Recent studies have evaluated technology-based interventions to improve medication adherence by using pharmaceutical databases, tailoring educational information to individual patient needs, delivering technology-driven reminders to patients and providers, and integrating in-person interventions with electronic alerts. Cellular phone reminders and in-home electronic technology used to communicate reminder messages have shown mixed results. Only one study has shown improvement in both adherence and clinical outcome. Current trials suggest that increasing automated reminders will complement but not replace the benefits seen with in-person communication for medication taking.Integration of in-person contacts with technology-driven medication adherence reminders, electronic medication reconciliation, and pharmaceutical databases may improve medication adherence and have a positive effect on cardiovascular clinical outcomes. Opportunities for providers to monitor the quality of care based on new adherence research are evolving and may be useful as standards for quality improvement emerge.
Project description:Introduced in 1977, transesophageal echocardiography (TEE) offered imaging through a new acoustic window sitting directly behind the heart, allowing improved evaluation of many cardiac conditions. Shortly thereafter, TEE was applied to the intraoperative environment, as investigators quickly recognized that continuous cardiac evaluation and monitoring during surgery, particularly cardiac operations, were now possible. Among the many applications for perioperative TEE, this review will focus on four recent advances: three-dimensional TEE imaging, continuous TEE monitoring in the intensive care unit, strain imaging, and assessment of diastolic ventricular function.
Project description:Resolving issues posed by our paper describing the late antiquity glass from Jelica (Serbia), we performed a thorough analysis of similar glass, systematically collected from the literature. The analysis showed that Foy 3.2 type evolved gradually from a composition similar to the Roman antimony-decolorized glass to a composition approaching Foy 2.1, lasting longer (second-seventh century AD) and spreading wider than originally described, including large parts of the Balkans, France interior, Germany, and Britain. The center of its distribution seems to be the Balkans and Italy. During the sixth century, Foy 3.2 glasses in the Balkans showed a significant increase of average MgO concentration compared to the earlier period and Foy 3.2 glasses outside the Balkans, implying different sand quarries and perhaps different trade routes for its imports. Recycling criteria for Foy 3.2 glass has been established. Similarly, 125 high-iron Foy 2.1 glasses are selected from the literature. They cluster within two groups regarding iron concentrations, which we term high iron (HI) and very high iron (VHI) Foy 2.1. In addition, there is a low lime subgroup of the VHI group, termed VHILL. The paper offers two possible explanations for the elevated iron, color branding, and different silica sources. High-iron glasses seem relatively evenly spread across the entire Mediterranean and its interior, representing, on average, around a quarter of the local Foy 2.1 assemblages. The percentages of high-iron samples are almost double in manufactured glass compared to raw glass, suggesting that the addition of iron was happening in the secondary workshops, i.e., for color branding. Among the manufactured glass, the proportions were higher in glassware than in windowpane glass. To capture the changing sand exploitation conditions, we propose the term "generic composition/type" or "(geochemical) class".
Project description:AimTo describe the epidemiology of critically ill children admitted to a paediatric intensive care unit (PICU) with acute respiratory disease. The association with intubation was analysed for the three most prevalent viruses and in those with and without viral co-infection.MethodsPatients admitted to the PICU (2004-2014) with acute respiratory disease were included. Analyses were performed utilising each respiratory viral infection or multiple viral infections as an exposure.ResultsThere were 1766 admissions with acute respiratory disease of which 1372 had respiratory virus testing and 748 had one or more viruses detected. The risk of intubation before or during the PICU stay was higher if parainfluenza virus was detected compared to respiratory syncytial virus (RSV) (OR: 2.20; 95% CI: 1.06-4.56). Sixty-three admissions had two or more viruses detected, and the combination of RSV and Rhinovirus/enterovirus was the most common. No significant difference was observed in the risk of intubation between patients with multiple and single viral infections.ConclusionHigher risk of intubation was found in patients with parainfluenza as compared to RSV. The risk of intubation comparing parainfluenza virus to other viruses and for patients with multiple versus single virus needs to be further studied.
Project description:Sponges are widely distributed in the global ocean and harbor diverse symbiotic microbes with mutualistic relationships. However, sponge symbionts in the deep sea remain poorly studied at the genome level. Here, we report a new glass sponge species of the genus Bathydorus and provide a genome-centric view of its microbiome. We obtained 14 high-quality prokaryotic metagenome-assembled genomes (MAGs) affiliated with the phyla Nitrososphaerota, Pseudomonadota, Nitrospirota, Bdellovibrionota, SAR324, Bacteroidota, and Patescibacteria. In total, 13 of these MAGs probably represent new species, suggesting the high novelty of the deep-sea glass sponge microbiome. An ammonia-oxidizing Nitrososphaerota MAG B01, which accounted for up to 70% of the metagenome reads, dominated the sponge microbiomes. The B01 genome had a highly complex CRISPR array, which likely represents an advantageous evolution toward a symbiotic lifestyle and forceful ability to defend against phages. A sulfur-oxidizing Gammaproteobacteria species was the second most dominant symbiont, and a nitrite-oxidizing Nitrospirota species could also be detected, but with lower relative abundance. Bdellovibrio species represented by two MAGs, B11 and B12, were first reported as potential predatory symbionts in deep-sea glass sponges and have undergone dramatic genome reduction. Comprehensive functional analysis indicated that most of the sponge symbionts encoded CRISPR-Cas systems and eukaryotic-like proteins for symbiotic interactions with the host. Metabolic reconstruction further illustrated their essential roles in carbon, nitrogen, and sulfur cycles. In addition, diverse putative phages were identified from the sponge metagenomes. Our study expands the knowledge of microbial diversity, evolutionary adaption, and metabolic complementarity in deep-sea glass sponges.
Project description:Objective:The objective of the study was to compare compressive strengths of two glass ionomer-based materials, with and without a light-cured, nano-filled coating, after cyclic loading and thermocycling. Materials and methods:To determine compressive strength of new restorative materials over a longer period of time, materials were analysed under simulated conditions where cyclic loading replicated masticatory loading and thermocycling simulated thermal oscillations in the oral cavity. Four groups of samples (n=7)-(1) Equia Fil (GC, Tokyo, Japan) uncoated; (2) Equia Fil coated with Equia Coat (GC, Tokyo, Japan); (3) Equia Forte Fil (GC, Tokyo, Japan) uncoated; and (4) Equia Forte Fil coated with Equia Forte coat (GC, Tokyo, Japan)-were subjected to cyclic loading (240,000 cycles) using a chewing simulator (MOD, Esetron Smart Robotechnologies, Ankara, Turkey). Results:Compressive strength measurements were performed according to ISO 9917-1:2007, using the universal mechanical testing machine (Instron, Lloyd, UK). Scanning electron microscope (SEM) analysis was performed after thermocycling. There were no statistically significant differences between Equia Fil and Equia Forte Fil irrespective of the coating (p<0.05), but a trend of increasing compressive strength in the coated samples was observed. Conclusions:Coating increases the compressive strength of Equia Fil and Equia Forte Fil, but not significantly.
Project description:BackgroundView classification is a key step toward building a fully automated system for interpretation of echocardiograms. However, compared with adult echocardiograms, creating a view classification model for pediatric echocardiograms poses additional challenges, such as greater variation in anatomy, structure size, and views. The aim of this study was to develop a computer vision model to autonomously perform view classification on pediatric echocardiographic images.MethodsUsing a training set of 12,067 echocardiographic images from patients aged 0 to 19 years, a convolutional neural network model was trained to identify 27 preselected standard pediatric echocardiographic views which included anatomic sweeps, color Doppler, and Doppler tracings. A validation set of 6,197 images was used for parameter tuning and model selection. A test set of 9,684 images from 100 different patients was then used to evaluate model accuracy. The model was also evaluated on a per study basis using a second test set consisting of 524 echocardiograms from children with leukemia to identify six preselected views pertinent to cardiac dysfunction surveillance.ResultsThe model identified the 27 preselected views with 90.3% accuracy. Accuracy was similar across age groups (89.3% for 0-4 years, 90.8% for 4-9 years, 90.0% for 9-14 years, and 91.2% for 14-19 years; P = .12). Examining the view subtypes, accuracy was 78.3% for the cine one location, 90.5% for sweeps with color Doppler, 82.2% for sweeps without color Doppler, and 91.1% for Doppler tracings. Among the leukemia cohort, the model identified the six preselected views on a per study basis with a positive predictive value of 98.7% to 99.2% and sensitivity of 76.9% to 94.8%.ConclusionsA convolutional neural network model was constructed for view classification of pediatric echocardiograms that was accurate across the spectrum of ages and view types. This work lays the foundation for automated quantitative analysis and diagnostic support to promote efficient, accurate, and scalable analysis of pediatric echocardiograms.
Project description:BackgroundThere is growing interest in the use of technology in neurorehabilitation, from robotic to sensor-based devices. These technologies are believed to be excellent tools for quantitative assessment of sensorimotor ability, addressing the shortcomings of traditional clinical assessments. However, clinical adoption of technology-based assessments is very limited. To understand this apparent contradiction, we sought to gather the points-of-view of different stakeholders in the development and use of technology-aided sensorimotor assessments.MethodsA questionnaire regarding motivators, barriers, and the future of technology-aided assessments was prepared and disseminated online. To promote discussion, we present an initial analysis of the dataset; raw responses are provided to the community as Supplementary Material. Average responses within stakeholder groups were compared across groups. Additional questions about respondent's demographics and professional practice were used to obtain a view of the current landscape of sensorimotor assessments and interactions between different stakeholders.ResultsOne hundred forty respondents from 23 countries completed the survey. Respondents were a mix of Clinicians (27%), Research Engineers (34%), Basic Scientists (15%), Medical Industry professionals (16%), Patients (2%) and Others (6%). Most respondents were experienced in rehabilitation within their professions (67% with >?5?years of experience), and had exposure to technology-aided assessments (97% of respondents). In general, stakeholders agreed on reasons for performing assessments, level of details required, current bottlenecks, and future directions. However, there were disagreements between and within stakeholders in aspects such as frequency of assessments, and important factors hindering adoption of technology-aided assessments, e.g., Clinicians' top factor was cost, while Research Engineers indicated device-dependent factors and lack of standardization. Overall, lack of time, cost, lack of standardization and poor understanding/lack of interpretability were the major factors hindering the adoption of technology-aided assessments in clinical practice. Reimbursement and standardization of technology-aided assessments were rated as the top two activities to pursue in the coming years to promote the field of technology-aided sensorimotor assessments.ConclusionsThere is an urgent need for standardization in technology-aided assessments. These efforts should be accompanied by quality cross-disciplinary activities, education and alignment of scientific language, to more effectively promote the clinical use of assessment technologies.Trial registrationNA; see Declarations section.
Project description:Pulmonary hypertension (PH) is a disease with severe morbidity and mortality. Echocardiography plays an essential role in the screening of PH. The quality of the acquired continuous wave Doppler signal is the major limitation of the method and can greatly affect the accuracy of estimated pulmonary pressures. The aim of this study was to evaluate the clinical need to image from multiple ultrasound windows in patients with suspected pulmonary hypertension. We prospectively evaluated 65 patients (43% male, mean age 67.2 years) with echocardiography and right heart catheterization. 17% had invasively normal pulmonary pressures, 83% had pulmonary hypertension. Peak tricuspid regurgitation (TR) velocity was imaged in five echocardiographic views. Sufficient Doppler signal was recorded in 94% of the patients. Correlation for overall peak TR velocity with invasively measured systolic pulmonary artery pressure was r?=?0.83 (p?<?0.001). Considering all five imaging windows resulted in a sensitivity of 87%, and a specificity of 91% for correct diagnosis of PH with an AUC of 0.89, which was significantly better as compared to sole imaging from the right ventricular modified apical four-chamber view (AUC 0.85, p?=?0.0395). Additional imaging from atypical views changed the overall peak TR velocity in 32% of the patients. A multiple-view approach changed the echocardiographic diagnosis of PH in 11% of the patients as opposed to sole imaging from an apical four-chamber view. This study comprehensively assessed the impact on clinical decision making when evaluating patients with an echocardiographic multiplane approach for suspected PH. This approach substantially increased sensitivity without a decrease in specificity.