Ontology highlight
ABSTRACT: Background/purpose
Culture environments play a critical role in stem cell expansion. This study aimed to evaluate the effects of 2,3,5,4'-tetrahydroxystilbene-2-O-b-D-glucoside (THSG) on the proliferation and differentiation of human dental pulp stem cells (DPSCs) in 2-dimensional (2D) and 3-dimensional (3D) culture systems.Materials and methods
Human DPSCs were seeded in T25 flasks for 2D cultivation. For the 3D culture system, DPSCs were mixed with microcarriers and cultured in spinner flasks. Cells in both culture systems were treated with THSG, and cell proliferation was determined using a cell counter and a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay. In THSG-treated DPSCs, the genes associated with proliferation, adipogenesis, neurogenesis, osteogenesis, pluripotency, oncogenesis, and apoptosis were analyzed using real-time polymerase chain reactions.Results
The spinner flask time-dependently improved cell numbers, cell viability, and expansion rates in THSG-treated DPSCs. In both the T25 and spinner flasks, the messenger RNA (mRNA) levels of proliferation, osteogenesis, and pluripotent-related genes had a significant maximum expression with 10 μM THSG treatment. However, 0.1 μM of THSG may be the most suitable condition for triggering neurogenesis and adipogenesis gene expression when DPSCs were cultured in spinner flasks. Furthermore, the number of oncogenes and apoptotic genes decreased considerably in the presence of THSG in both the T25 and spinner flasks.Conclusion
The spinner flask bioreactor combined with THSG may upregulate proliferation and lineage-specific differentiation in DPSCs. Thus, the combination can be used to mass-produce and cultivate human DPSCs for regenerative dentistry.
SUBMITTER: Wu Y
PROVIDER: S-EPMC8740205 | biostudies-literature |
REPOSITORIES: biostudies-literature