Ontology highlight
ABSTRACT: Background
Dysregulation of RNA binding protein (RBP) expression has been confirmed to be causally linked with tumorigenesis. The detailed biological effect and underlying mechanisms of the RBP GRSF1 in hepatocellular carcinoma (HCC) remain unclear.Methods
HCC cells with stable knockdown of GRSF1 were established using two sh-RNA-encoding lentiviruses. The functions of GRSF1 in HCC were explored using MTT, colony formation, flow cytometry, and Transwell assays and a xenograft model. Transcriptomic sequencing in GRSF1-deficient MHCC-97H cells was carried out to identify the downstream effector of GRSF1. The regulatory mechanisms among GRSF1, YY1 and miR-30e-5p were investigated via RNA immunoprecipitation, luciferase, RNA pull-down and ChIP assays. Several in vivo assays were used to assess the selectivity of the small-molecule compound VE-821 in HCC and to confirm the absence of general toxicity in animal models.Results
GRSF1 was frequently increased in HCC tissue and cells and was associated with worse clinical outcomes. GRSF1 functions as a novel oncogenic RBP by enhancing YY1 mRNA stability, and the GUUU motifs within the YY1 3`UTR 2663-2847 were the specific binding motifs for GRSF1. YY1 feedback promoted GRSF1 expression by binding to the GRSF1 promoter. In addition, YY1 was a critical target of miR-30e-5p, which was confirmed in this study to inhibit HCC hepatocarcinogenesis. GRSF1 and miR-30e-5p competitively regulated YY1 by binding to its 3`UTR 2663-2847 region. Finally, we identified that VE-821 blocked HCC progression by inhibiting the GRSF1/YY1 pathway.Conclusion
This study revealed the interaction network among GRSF1, YY1 and miR-30e-5p, providing new insight into HCC pathogenesis, and indicated that VE821 may serve as a novel agent with potential for HCC treatment through inhibition of the GRSF1/YY1 axis.
SUBMITTER: Han L
PROVIDER: S-EPMC8742353 | biostudies-literature |
REPOSITORIES: biostudies-literature