Ontology highlight
ABSTRACT: Objective
Policy-makers and practitioners have a need to assess community resilience in disasters. Prior efforts conflated resilience with community functioning, combined resistance and recovery (the components of resilience), and relied on a static model for what is inherently a dynamic process. We sought to develop linked conceptual and computational models of community functioning and resilience after a disaster.Methods
We developed a system dynamics computational model that predicts community functioning after a disaster. The computational model outputted the time course of community functioning before, during, and after a disaster, which was used to calculate resistance, recovery, and resilience for all US counties.Results
The conceptual model explicitly separated resilience from community functioning and identified all key components for each, which were translated into a system dynamics computational model with connections and feedbacks. The components were represented by publicly available measures at the county level. Baseline community functioning, resistance, recovery, and resilience evidenced a range of values and geographic clustering, consistent with hypotheses based on the disaster literature.Conclusions
The work is transparent, motivates ongoing refinements, and identifies areas for improved measurements. After validation, such a model can be used to identify effective investments to enhance community resilience. (Disaster Med Public Health Preparedness. 2018;12:127-137).
SUBMITTER: Links JM
PROVIDER: S-EPMC8743042 | biostudies-literature |
REPOSITORIES: biostudies-literature