Project description:Metformin, the medicine most commonly prescribed for treatment of Type II diabetes, is among the most abundant pharmaceuticals being introduced into the environment. Pharmaceuticals are increasingly found in wastewater and surface waters around the world, often due to incomplete metabolism in humans and subsequent excretion in human waste. Risk analyses and exposure studies have raised concerns about potential negative impacts of pharmaceuticals at current environmental levels. Results of the present study indicate that metformin at concentrations in the range of what has been documented in freshwater systems and waste-water effluent (40 ?g/L) affects aggressive behavior in adult male Betta splendens. Subjects exhibited less aggression toward a male dummy stimulus after four weeks exposure to metformin-treated water when compared to behavior measured immediately prior to their exposure, and in comparison to a separate cohort of un-exposed control fish. This effect persisted after 20 weeks exposure as well. Subjects exposed to metformin at a concentration twice that currently observed in nature (80 ?g/L) exhibited an even more substantial reduction in aggressive behaviors compared to controls and pre-exposure measurements than those observed in the low-dose treatment group. Such changes in behavior have the potential to affect male fitness and possibly impact the health of natural populations of aquatic organisms exposed to the drug.
Project description:Ever decreasing costs along with advances in sequencing and library preparation technologies enable even small research groups to generate chromosome-level assemblies today. Here we report the generation of an improved chromosome-level assembly for the Siamese fighting fish (Betta splendens) that was carried out during a practical university master's course. The Siamese fighting fish is a popular aquarium fish and an emerging model species for research on aggressive behavior. We updated the current genome assembly by generating a new long-read nanopore-based assembly with subsequent scaffolding to chromosome-level using previously published Hi-C data. The use of ?35x nanopore-based long-read data sequenced on a MinION platform (Oxford Nanopore Technologies) allowed us to generate a baseline assembly of only 1,276 contigs with a contig N50 of 2.1 Mbp, and a total length of 441 Mbp. Scaffolding using the Hi-C data resulted in 109 scaffolds with a scaffold N50 of 20.7 Mbp. More than 99% of the assembly is comprised in 21 scaffolds. The assembly showed the presence of 96.1% complete BUSCO genes from the Actinopterygii dataset indicating a high quality of the assembly. We present an improved full chromosome-level assembly of the Siamese fighting fish generated during a university master's course. The use of ?35× long-read nanopore data drastically improved the baseline assembly in terms of continuity. We show that relatively in-expensive high-throughput sequencing technologies such as the long-read MinION sequencing platform can be used in educational settings allowing the students to gain practical skills in modern genomics and generate high quality results that benefit downstream research projects.
Project description:In Southeast Asia, males of the Siamese fighting fish Betta splendens have been selected across centuries for paired-staged fights. During the selection process, matched for size males fight in a small tank until the contest is resolved. Breeders discard losing batches and reproduce winner batches with the aim of increasing fight performance. We assessed the results of this long-term selection process by comparing under standard laboratory conditions male and female aggressive behaviour of one strain selected for staged fights ("fighters") and one strain of wild-types. The aggressive response of adult fish was tested against their mirror image or a size-matched conspecific. Fighter males were more aggressive than wild-type males for all measured behaviours. Differences were not only quantitative but the pattern of fight display was also divergent. Fighter males had an overall higher swimming activity, performing frequent fast strikes in the direction of the intruder and displaying from a distance. Wild-type males were less active and exhibited aggressive displays mostly in close proximity to the stimuli. Females of the fighter strain, which are not used for fights, were also more aggressive than wild-type females. Aggressive behaviours were correlated across male and female fighter siblings, suggesting common genetic and physiological mechanisms to male and female aggression in this species. The study further shows that results were largely independent of the stimulus type, with the mirror test inducing similar and less variable responses than the live conspecific presentation. These results suggest that selection for male winners co-selected for high-frequency and metabolic demanding aggressive display in males and also enhanced female aggression, opening a wide range of testable hypothesis about the ultimate and proximate mechanisms of male and female aggression in B. splendens.
Project description:Siamese fighting fish Betta splendens are notorious for their aggressiveness and accordingly have been widely used to study aggression. However, the lack of a reference genome has, to date, limited the understanding of the genetic basis of aggression in this species. Here, we present the first reference genome assembly of the Siamese fighting fish. Frist, we sequenced and de novo assembled a 465.24-Mb genome for the B. splendens variety Giant, with a weighted average (N50) scaffold size of 949.03 Kb and an N50 contig size of 19.01 Kb, covering 99.93% of the estimated genome size. To obtain a chromosome-level genome assembly, we constructed one Hi-C library and sequenced 75.24 Gb reads using the BGISEQ-500 platform. We anchored approximately 93% of the scaffold sequences into 21 chromosomes and evaluated the quality of our assembly using the high-contact frequency heat map and Benchmarking Universal Single-Copy Orthologs. We also performed comparative chromosome analyses between Oryzias latipes and B. splendens, revealing a chromosome conservation evolution in B. splendens. We predicted 23,981 genes assisted by RNA-sequencing data generated from brain, liver, muscle, and heart tissues of Giant and annotated 15% repetitive sequences in the genome. Additionally, we resequenced five other B. splendens varieties and detected ∼3.4 M single-nucleotide variations and 27,305 insertions and deletions. We provide the first chromosome-level genome for the Siamese fighting fish. The genome will lay a valuable foundation for future research on aggression in B. splendens.
Project description:Betta pi is the largest species of mouthbrooding fighting fish, while B. splendens is a globally ornamental bubble nesting fish. Complete mitochondrial genomes (mitogenomes) of wild individuals of B. pi and B. splendens were determined. The mitogenome sequences were 16,521 and 16,980 base pair in length, containing 37 genes with gene order identical to most teleost mitogenomes. Overall A?+?T content was 57.72% for B. pi and 61.92% for B. splendens. Phylogenetic analysis showed that B. pi and B. splendens were highly supported monophyletic clades. Our results will facilitate further genetic studies, including mitochondrial variations and population structure of fighting fishes.
Project description:Conspecific male animals fight for resources such as food and mating opportunities but typically stop fighting after assessing their relative fighting abilities to avoid serious injuries. Physiologically, how the fighting behavior is controlled remains unknown. Using the fighting fish Betta splendens, we studied behavioral and brain-transcriptomic changes during the fight between the two opponents. At the behavioral level, surface-breathing, and biting/striking occurred only during intervals between mouth-locking. Eventually, the behaviors of the two opponents became synchronized, with each pair showing a unique behavioral pattern. At the physiological level, we examined the expression patterns of 23,306 brain transcripts using RNA-sequencing data from brains of fighting pairs after a 20-min (D20) and a 60-min (D60) fight. The two opponents in each D60 fighting pair showed a strong gene expression correlation, whereas those in D20 fighting pairs showed a weak correlation. Moreover, each fighting pair in the D60 group showed pair-specific gene expression patterns in a grade of membership analysis (GoM) and were grouped as a pair in the heatmap clustering. The observed pair-specific individualization in brain-transcriptomic synchronization (PIBS) suggested that this synchronization provides a physiological basis for the behavioral synchronization. An analysis using the synchronized genes in fighting pairs of the D60 group found genes enriched for ion transport, synaptic function, and learning and memory. Brain-transcriptomic synchronization could be a general phenomenon and may provide a new cornerstone with which to investigate coordinating and sustaining social interactions between two interacting partners of vertebrates.
Project description:Optimal feeding frequency in aquaculture is vital for the sustainable and economical production of healthy, high-quality fish. This article described the growth performance and survival rate data in the juvenile phase of two commercially important ornamental fish species; Betta splendens (Siamese fighting fish) and Poecilia reticulata (Guppy) reared at different feeding frequency. Thirty days old juveniles of both species were randomly distributed into 12 3 L rectangular plastic tank (n = 10 fish/tank; three replicates per feeding frequency) where they were subjected to four different feeding frequency treatments (1 meal/day (T1), 2 meal/day (Control), 3 meal/day (T2) and four meal/day (T3)) using commercial ornamental fish micropellets for 60 days. The juvenile's weight and length were measured once a week while the number of live fish were recorded daily. The amount of feed intake was also recorded by weighing in the weight of micropellet left after feeding. At the end of the experimental period, the specific growth rate (SGR), food conversion ratio (FCR) and condition factor (K) were calculated for growth performance using the weight, length and feed intake data while the survival rate was calculated using the number of live fish data. Normality test, One-way ANOVA analysis followed by Tukey pos-hoc test were then performed on the data obtained from the calculation of SGR, FCR, K an survival rate. The data presented in this article will aid the rearing process of both species' juveniles for commercial, experimental and personal usage purpose.
Project description:Mekong fighting fish (Betta smaragdina) are found in Northeast Thailand. A complete mitochondrial genome (mitogenome) of B. smaragdina was assembled and annotated. Mitogenome sequences were 16,372 bp in length, with slight AT bias (59.8%), containing 37 genes with identical order to most teleost mitogenomes. Phylogenetic analysis of B. smaragdina showed closer relationship with B. splendens and B. mahachaiensis as the bubble-nesting group, compared to the mouthbrooder group (B. apollon, B. simplex, and B. pi). Results will allow the creation of a reference annotated genome that can be utilized to sustain biodiversity and eco-management of betta bioresources to improve conservation programs.
Project description:Siamese fighting fish Betta splendens are notorious for their aggressiveness and males of this fish have been widely used to study aggression. However, an understanding of brain transcriptome signature associated with aggression in the context of male-male interaction in this fish remains to be understood. Herein, RNA-Seq transcriptome data from 37 brains samples collected at different fighting stages are described. These brain samples were collected before fighting (B), during fighting (D20 and D60), and after fighting (A0 and A30). The raw data were analyzed for differential gene expression using edgeR package in R. A criterion of FDR cut-off ≤ 0.05 and an absolute fold change (FC) of 0 or greater were used to identify top upregulated and downregulated genes in fighting groups (D20, D60, A0, and A30) relative to non-fighting group (B). The data presented hereafter enable fundamental studies on genes and molecular events mediating aggressive behavior in this fish and will lay a valuable foundation for future research on the aggression of vertebrates.