Project description:Precision medicine has the potential to revolutionize the way cardiovascular diseases are diagnosed, predicted, and treated by tailoring treatment strategies to the individual characteristics of each patient. Artificial intelligence (AI) has recently emerged as a promising tool for improving the accuracy and efficiency of precision cardiovascular medicine. In this scoping review, we aimed to identify and summarize the current state of the literature on the use of AI in precision cardiovascular medicine. A comprehensive search of electronic databases, including Scopes, Google Scholar, and PubMed, was conducted to identify relevant studies. After applying inclusion and exclusion criteria, a total of 28 studies were included in the review. We found that AI is being increasingly applied in various areas of cardiovascular medicine, including the diagnosis, prognosis of cardiovascular diseases, risk prediction and stratification, and treatment planning. As a result, most of these studies focused on prediction (50%), followed by diagnosis (21%), phenotyping (14%), and risk stratification (14%). A variety of machine learning models were utilized in these studies, with logistic regression being the most used (36%), followed by random forest (32%), support vector machine (25%), and deep learning models such as neural networks (18%). Other models, such as hierarchical clustering (11%), Cox regression (11%), and natural language processing (4%), were also utilized. The data sources used in these studies included electronic health records (79%), imaging data (43%), and omics data (4%). We found that AI is being increasingly applied in various areas of cardiovascular medicine, including the diagnosis, prognosis of cardiovascular diseases, risk prediction and stratification, and treatment planning. The results of the review showed that AI has the potential to improve the performance of cardiovascular disease diagnosis and prognosis, as well as to identify individuals at high risk of developing cardiovascular diseases. However, further research is needed to fully evaluate the clinical utility and effectiveness of AI-based approaches in precision cardiovascular medicine. Overall, our review provided a comprehensive overview of the current state of knowledge in the field of AI-based methods for precision cardiovascular medicine and offered new insights for researchers interested in this research area.
Project description:The ambition of precision medicine is to design and optimize the pathway for diagnosis, therapeutic intervention, and prognosis by using large multidimensional biological datasets that capture individual variability in genes, function and environment. This offers clinicians the opportunity to more carefully tailor early interventions- whether treatment or preventative in nature-to each individual patient. Taking advantage of high performance computer capabilities, artificial intelligence (AI) algorithms can now achieve reasonable success in predicting risk in certain cancers and cardiovascular disease from available multidimensional clinical and biological data. In contrast, less progress has been made with the neurodevelopmental disorders, which include intellectual disability (ID), autism spectrum disorder (ASD), epilepsy and broader neurodevelopmental disorders. Much hope is pinned on the opportunity to quantify risk from patterns of genomic variation, including the functional characterization of genes and variants, but this ambition is confounded by phenotypic and etiologic heterogeneity, along with the rare and variable penetrant nature of the underlying risk variants identified so far. Structural and functional brain imaging and neuropsychological and neurophysiological markers may provide further dimensionality, but often require more development to achieve sensitivity for diagnosis. Herein, therefore, lies a precision medicine conundrum: can artificial intelligence offer a breakthrough in predicting risks and prognosis for neurodevelopmental disorders? In this review we will examine these complexities, and consider some of the strategies whereby artificial intelligence may overcome them.
Project description:Artificial intelligence (AI) can unveil novel personalized treatments based on drug screening and whole-exome sequencing experiments (WES). However, the concept of "black box" in AI limits the potential of this approach to be translated into the clinical practice. In contrast, explainable AI (XAI) focuses on making AI results understandable to humans. Here, we present a novel XAI method -called multi-dimensional module optimization (MOM)- that associates drug screening with genetic events, while guaranteeing that predictions are interpretable and robust. We applied MOM to an acute myeloid leukemia (AML) cohort of 319 ex-vivo tumor samples with 122 screened drugs and WES. MOM returned a therapeutic strategy based on the FLT3, CBFβ-MYH11, and NRAS status, which predicted AML patient response to Quizartinib, Trametinib, Selumetinib, and Crizotinib. We successfully validated the results in three different large-scale screening experiments. We believe that XAI will help healthcare providers and drug regulators better understand AI medical decisions.
Project description:Glaucoma is a multifactorial neurodegenerative illness requiring early diagnosis and strict monitoring of the disease progression. Current exams for diagnosis and prognosis are based on clinical examination, intraocular pressure (IOP) measurements, visual field tests, and optical coherence tomography (OCT). In this scenario, there is a critical unmet demand for glaucoma-related biomarkers to enhance clinical testing for early diagnosis and tracking of the disease's development. The introduction of validated biomarkers would allow for prompt intervention in the clinic to help with prognosis prediction and treatment response monitoring. This review aims to report the latest acquisitions on biomarkers in glaucoma, from imaging analysis to genetics and metabolic markers.
Project description:Stroke ranks among the leading causes for morbidity and mortality worldwide. New and continuously improving treatment options such as thrombolysis and thrombectomy have revolutionized acute stroke treatment in recent years. Following modern rhythms, the next revolution might well be the strategic use of the steadily increasing amounts of patient-related data for generating models enabling individualized outcome predictions. Milestones have already been achieved in several health care domains, as big data and artificial intelligence have entered everyday life. The aim of this review is to synoptically illustrate and discuss how artificial intelligence approaches may help to compute single-patient predictions in stroke outcome research in the acute, subacute and chronic stage. We will present approaches considering demographic, clinical and electrophysiological data, as well as data originating from various imaging modalities and combinations thereof. We will outline their advantages, disadvantages, their potential pitfalls and the promises they hold with a special focus on a clinical audience. Throughout the review we will highlight methodological aspects of novel machine-learning approaches as they are particularly crucial to realize precision medicine. We will finally provide an outlook on how artificial intelligence approaches might contribute to enhancing favourable outcomes after stroke.
Project description:The complexity of orphan diseases, which are those that do not have an effective treatment, together with the high dimensionality of the genetic data used for their analysis and the high degree of uncertainty in the understanding of the mechanisms and genetic pathways which are involved in their development, motivate the use of advanced techniques of artificial intelligence and in-depth knowledge of molecular biology, which is crucial in order to find plausible solutions in drug design, including drug repositioning. Particularly, we show that the use of robust deep sampling methodologies of the altered genetics serves to obtain meaningful results and dramatically decreases the cost of research and development in drug design, influencing very positively the use of precision medicine and the outcomes in patients. The target-centric approach and the use of strong prior hypotheses that are not matched against reality (disease genetic data) are undoubtedly the cause of the high number of drug design failures and attrition rates. Sampling and prediction under uncertain conditions cannot be avoided in the development of precision medicine.
Project description:IntroductionInflammatory Bowel Disease (IBD), encompassing Crohn's disease and ulcerative colitis, presents significant clinical challenges due to its heterogeneous nature and complex etiology. Recent advancements in biomedical research have enhanced our understanding of IBD's genetic, microbial, and biochemical aspects. However, persistent issues in clinical management, including treatment non-response, surgical interventions, and diagnostic uncertainties, underscore the need for more targeted approaches. This review examines the convergence of artificial intelligence (AI) and precision medicine (PM) in IBD management. By leveraging AI's capacity to analyze complex, multi-dimensional datasets, this emerging field offers promising applications in improving diagnostic accuracy, predicting treatment responses, and forecasting disease progression, potentially transforming IBD patient care.MethodThe systematic review (SR) was conducted by searching the following databases: PubMed, PubMed PMC, BVS, Scopus, Web of Science, Embase, Cochrane, and ProQuest up to February 2024. Studies that employed AI in IBD applied to precision medicine were included.Results139 studies on applying AI in precision medicine for IBD were identified. Most studies (>70%) were published after 2020, indicating a recent surge in interest. The AI applications primarily focused on diagnosis, treatment response prediction, and prognosis. Machine learning algorithms were predominantly used, particularly random forest, logistic regression, and support vector machines. Omics data were frequently employed as predictors, especially transcriptomics and microbiome analyses. Studies demonstrated good predictive performance across all three areas, with median AUC values ranging from 0.85 to 0.90.ConclusionAI applications in IBD show promising potential to enhance clinical practice, particularly in disease prognosis and predicting treatment response. However, clinical implementation requires further validation through prospective studies. Future research should focus on standardizing protocols, defining clinically significant outcomes, and evaluating the efficacy of these tools.
Project description:Currently, Medical errors are a serious problem when examining patients. Creating information systems that use the capabilities of evidence-based medicine and artificial intelligence methods will allow the doctor to make an informed and proven decision. In this article, the authors offer a description of an information system that solves the problem of supporting medical decision making based on evidence-based medicine. This is achieved by using artificial intelligence methods. This work was supported by a grant from the Ministry of Education and Science of the Russian Federation, a unique project identifier RFMEFI60819X0278.
Project description:There are over 6,000 different rare diseases estimated to impact 300 million people worldwide. As genetic testing becomes more common practice in the clinical setting, the number of rare disease diagnoses will continue to increase, resulting in the need for novel treatment options. Identifying treatments for these disorders is challenging due to a limited understanding of disease mechanisms, small cohort sizes, interindividual symptom variability, and little commercial incentive to develop new treatments. A promising avenue for treatment is drug repurposing, where FDA-approved drugs are repositioned as novel treatments. However, linking disease mechanisms to drug action can be extraordinarily difficult and requires a depth of knowledge across multiple fields, which is complicated by the rapid pace of biomedical knowledge discovery. To address these challenges, The Hugh Kaul Precision Medicine Institute developed an artificial intelligence tool, mediKanren, that leverages the mechanistic insight of genetic disorders to identify therapeutic options. Using knowledge graphs, mediKanren enables an efficient way to link all relevant literature and databases. This tool has allowed for a scalable process that has been used to help over 500 rare disease families. Here, we provide a description of our process, the advantages of mediKanren, and its impact on rare disease patients.
Project description:Otolaryngological diagnoses, such as otitis media, are traditionally performed using endoscopy, wherein diagnostic accuracy can be subjective and vary among clinicians. The integration of objective tools, like artificial intelligence (AI), could potentially improve the diagnostic process by minimizing the influence of subjective biases and variability. We systematically reviewed the AI techniques using medical imaging in otolaryngology. Relevant studies related to AI-assisted otitis media diagnosis were extracted from five databases: Google Scholar, PubMed, Medline, Embase, and IEEE Xplore, without date restrictions. Publications that did not relate to AI and otitis media diagnosis or did not utilize medical imaging were excluded. Of the 32identified studies, 26 used tympanic membrane images for classification, achieving an average diagnosis accuracy of 86% (range: 48.7-99.16%). Another three studies employed both segmentation and classification techniques, reporting an average diagnosis accuracy of 90.8% (range: 88.06-93.9%). These findings suggest that AI technologies hold promise for improving otitis media diagnosis, offering benefits for telemedicine and primary care settings due to their high diagnostic accuracy. However, to ensure patient safety and optimal outcomes, further improvements in diagnostic performance are necessary.