Project description:Dengue is a mosquito-borne disease that has been an epidemic in China for many years. Aedes albopictus is the dominant Aedes mosquito species and the main vector of dengue in China. Epidemiologically, dengue mainly occurs in Guangdong Province; it does not occur or rarely occurs in other areas of mainland China. This distribution may be associated with climate, mosquito density, and other factors in different regions; however, the effect of temperature on the vector competence of Ae. albopictus for dengue viruses (DENV) remains unclear. In this study, Ae. albopictus was orally infected with dengue virus 2 (DENV-2) and reared at constant temperatures (18, 23, 28, and 32°C) and a fluctuating temperature (28-23-18°C). The infection status of the midguts, ovaries, and salivary glands of each mosquito was detected by polymerase chain reaction (PCR) at 0, 5, 10, and 15 days post-infection (dpi). DENV-2 RNA copies from positive tissues were quantified by quantitative real time PCR (qRT-PCR). At 18°C, DENV-2 proliferated slowly in the midgut of Ae. albopictus, and the virus could not spread to the salivary glands. At 23 and 28°C, DENV-2 was detected in the ovaries and salivary glands at 10 dpi. The rates of infection, dissemination, population transmission, and DENV-2 copies at 28°C were higher than those at 23°C at any time point. At 32°C, the extrinsic incubation period (EIP) for DENV-2 in Ae. albopictus was only 5 dpi, and the vector competence was the highest among all the temperatures. Compared with 28°C, at 28-23-18°C, the positive rate and the amount of DENV-2 in the salivary glands were significantly lower. Therefore, temperature is an important factor affecting the vector competence of Ae. albopictus for DENV-2. Within the suitable temperature range, the replication of DENV-2 in Ae. albopictus accelerated, and the EIP was shorter with a higher temperature. Our results provide a guide for vector control and an experimental basis for differences in the spatial distribution of dengue cases.
Project description:Dengue fever is endemic in Malaysia, contributing to significant economic and health burden in the country. Aedes aegypti and Ae. albopictus are the main vectors of the dengue virus (DENV), which circulates in sylvatic and human transmission cycles and has been present in Malaysia for decades. The study investigated the presence and distribution of DENV in urban localities in the Klang Valley, Peninsular Malaysia. A total of 364 Ae. aegypti and 1,025 Ae. albopictus larvae, and 10 Ae. aegypti and 42 Ae. albopictus adult mosquitoes were screened for the presence of DENV. In total, 31 (2.2%) samples were positive, of which 2 Ae. albopictus larvae were co-infected with two serotypes, one with DENV-2 and DENV-3 and the other with DENV-3 and DENV-4. Phylogenetic analysis determined that the isolates belonged to DENV-1 genotype I (1 Ae. aegypti adult), DENV-2 (1 Ae. albopictus larva), DENV-3 genotype V (3 Ae. aegypti larvae and 10 Ae. albopictus larvae) and DENV-4 genotype IV (6 Ae. aegypti larvae and 12 Ae. albopictus larvae), a sylvatic strain of DENV-4 which was most closely related with sylvatic strains isolated from arboreal mosquitoes and sentinel monkeys in Peninsular Malaysia in the 1970s. All four DENV serotypes were co-circulating throughout the study period. The detection of a sylvatic strain of DENV-4 in Ae. aegypti and Ae. albopictus mosquitoes in urban areas in Peninsular Malaysia highlights the susceptibility of these vectors to infection with sylvatic DENV. The infectivity and vector competence of these urban mosquitoes to this strain of the virus needs further investigation, as well as the possibility of the emergence of sylvatic virus into the human transmission cycle.
Project description:BackgroundAedes albopictus is an important vector of Dengue virus (DENV) and it has quickly invaded the tropical and temperate environments worldwide. A few studies have shown that, microRNAs (miRNAs) regulate mosquito defense against pathogens. However, there is no systematic analysis of the impact of DENV infection on miRNA expression in Ae. albopictus. We conducted this study to investigate the miRNA expression of Ae. albopictus upon DENV-2 infection using Illumina RNA sequencing.ResultsA total of 103 known and 5 novel candidate miRNAs were identified in DENV-2 infected and non-infected adult female Ae. albopictus. Comparative analysis indicated that 52 miRNAs were significantly down-regulated and 18 were up-regulated significantly after infection. Furthermore, RT-qPCR validated the expression patterns of eleven of these differentially expressed miRNAs. Targets prediction and functional analysis of these regulated miRNAs suggested that miR-34-5p and miR-87 might be involved in the anti-pathogen and immune responses.ConclusionThis is the first systematic study on the impact of DENV infection on miRNA expression in Ae. albopictus. Complex changes in miRNA expression suggest a potential role of miRNAs in antiviral responses by regulating immune-related genes. This investigation provides information concerning DENV-induced miRNAs and offers clues for identifying potential candidates for vector based antiviral strategies.
Project description:The main vector of dengue in America is the mosquito Aedes aegypti, which is infected by dengue virus (DENV) through receptors of midgut epithelial cells. The envelope protein (E) of dengue virus binds to receptors present on the host cells through its domain III that has been primarily recognized to bind cell receptors. In order to identify potential receptors, proteins from mosquito midgut tissue and C6/36 cells were purified by affinity using columns with the recombinant E protein domain III (rE-DIII) or DENV particles bound covalently to Sepharose 4B to compare and evaluate their performance to bind proteins including putative receptors from female mosquitoes of Ae. aegypti. To determine their identity mass spectrometric analysis of purified proteins separated by polyacrylamide gel electrophoresis was performed. Our results indicate that both viral particles and rE-DIII bound proteins with the same apparent molecular weights of 57 and 67?kDa. In addition, viral particles bound high molecular weight proteins. Purified proteins identified were enolase, beta-adrenergic receptor kinase (beta-ARK), translation elongation factor EF-1 alpha/Tu, and cadherin.
Project description:BackgroundThe primary disease vectors for dengue virus (DENV) transmission between humans are the mosquitoes Aedes aegypti and Aedes albopictus, with Ae. aegypti population size strongly correlated with DENV outbreaks. When a mosquito is infected with DENV, the virus migrates from the midgut to the salivary glands to complete the transmission cycle. How the virus crosses the hemocoel, resulting in systemic infection, is still unclear however. During viral infection and migration, the innate immune system is activated in defense. As part of cellular-mediated immunity, hemocytes are known to defend against bacteria and Plasmodium infection and may also participate in defending against DENV infection. Hemocytes are categorized into three cell types: prohemocytes, granulocytes, and oenocytoids. Here, we investigated which hemocytes can be infected by DENV and compare hemocyte infection between Ae. aegypti and Ae. albopictus.MethodsHemocytes were collected from Ae. aegypti and Ae. albopictus mosquitoes that were intrathoracically infected with DENV2-GFP. The collected hemocytes were then identified via Giemsa staining and examined microscopically for morphological differences and viral infection.ResultsAll three types of hemocytes were infected by DENV, though the predominantly infected cell type was prohemocytes. In Ae. aegypti, the highest and lowest infection rates at 7 days post infection occurred in prohemocytes and granulocytes, respectively. Prohemocytes were also the primary infection target of DENV in Ae. albopictus, with similar infection rates across the other two hemocyte groups. The ratios of hemocyte composition did not differ significantly between non-infected and infected mosquitoes for either species.ConclusionsIn this study, we showed that prohemocytes were the major type of hemocyte infected by DENV in both Ae. aegypti and Ae. albopictus. The infection rate of prohemocytes in Ae. albopictus was lower than that in Ae. aegypti, which may explain why systemic DENV infection in Ae. albopictus is less efficient than in Ae. aegypti and why Ae. albopictus is less correlated to dengue fever outbreaks. Future work in understanding the mechanisms behind these phenomena may help reduce arbovirus infection prevalence.
Project description:In 2014 in Japan, 162 autochthonous dengue cases were reported for the first time in nearly 70 years. Here, we report the results of the detection and isolation of dengue virus (DENV) from mosquitoes collected in Tokyo Metropolis in 2014 and 2015. The phylogenetic relationship among DENV isolates from mosquitoes and from patients based on both the entire envelope gene and whole coding sequences was evaluated. Herein, 2,298 female and 956 male Aedes albopictus mosquitoes were collected at six suspected locations of DENV infection in Tokyo Metropolis from August to October in 2014 and grouped into 124 and 35 pools, respectively, for viral genome detection and DENV isolation. Dengue virus RNA was detected using reverse transcription polymerase chain reaction and TaqMan assays from 49 female pools; 16 isolates were obtained using C6/36 and Vero cells. High minimum infection rates (11.2-66.7) persisted until mid-September. All DENV isolates belonged to the genotype I in serotype 1 (DENV-1), and its sequences demonstrated > 99% homology to the sequence of the DENV isolated from a patient in the vicinity of Tokyo Metropolis in 2014. Therefore, Ae. albopictus was a major DENV vector, and a single DENV-1 strain circulated in Tokyo Metropolis in 2014. Dengue virus was not detected from male mosquitoes in 2014 and wild larvae in April 2015. Thus, the possibility of both vertical transmission and overwintering of DENV was extremely low, even in dengue-epidemic areas. This study reports the first entomological information on a dengue outbreak in a temperate region, where no Aedes aegypti mosquitoes are distributed.
Project description:The dramatic global expansion of Aedes albopictus in the last three decades has increased public health concern because it is a potential vector of numerous arthropod-borne viruses (arboviruses), including the most prevalent arboviral pathogen of humans, dengue virus (DENV). Ae. aegypti is considered the primary DENV vector and has repeatedly been incriminated as a driving force in dengue's worldwide emergence. What remains unresolved is the extent to which Ae. albopictus contributes to DENV transmission and whether an improved understanding of its vector status would enhance dengue surveillance and prevention. To assess the relative public health importance of Ae. albopictus for dengue, we carried out two complementary analyses. We reviewed its role in past dengue epidemics and compared its DENV vector competence with that of Ae. aegypti. Observations from "natural experiments" indicate that, despite seemingly favorable conditions, places where Ae. albopictus predominates over Ae. aegypti have never experienced a typical explosive dengue epidemic with severe cases of the disease. Results from a meta-analysis of experimental laboratory studies reveal that although Ae. albopictus is overall more susceptible to DENV midgut infection, rates of virus dissemination from the midgut to other tissues are significantly lower in Ae. albopictus than in Ae. aegypti. For both indices of vector competence, a few generations of mosquito colonization appear to result in a relative increase of Ae. albopictus susceptibility, which may have been a confounding factor in the literature. Our results lead to the conclusion that Ae. albopictus plays a relatively minor role compared to Ae. aegypti in DENV transmission, at least in part due to differences in host preferences and reduced vector competence. Recent examples of rapid arboviral adaptation to alternative mosquito vectors, however, call for cautious extrapolation of our conclusion. Vector status is a dynamic process that in the future could change in epidemiologically important ways.
Project description:The Asian tiger mosquito, Aedes albopictus, is an important vector for the transmission of arboviruses such as dengue virus (DENV). Adenosine deaminase (ADA) is a well-characterized metabolic enzyme involved in facilitating blood feeding and (or) arbovirus transmission in some hematophagous insect species. We previously reported the immunologic function of ADA by investigating its effect on mast cell activation and the interaction with mast cell tryptase and chymase. The 2-D gel electrophoresis and mass spectrometry analysis in the current study revealed that ADA is present and upregulated following mosquito blood feeding, as confirmed by qRT-PCR and western blot. In addition, the recombinant ADA efficiently converted adenosine to inosine. Challenging the Raw264.7 and THP-1 cells with recombinant ADA resulted in the upregulation of IL-1β, IL-6, TNF-α, CCL2, IFN-β, and ISG15. The current study further identified recombinant ADA as a positive regulator in NF-κB signaling targeting TAK1. It was also found that recombinant Ae. albopictus ADA facilitates the replication of DENV-2. Compared with cells infected by DENV-2 alone, the co-incubation of recombinant ADA with DENV-2 substantially increased IL-1β, IL-6, TNF-α, and CCL2 gene transcripts in Raw264.7 and THP-1 cells. However, the expression of IFN-β and ISG15 were markedly downregulated in Raw264.7 cells but upregulated in THP-1 cells. These findings suggest that the immunomodulatory protein, Ae. albopictus ADA is involved in mosquito blood feeding and may modulate DENV transmission via macrophage or monocyte-driven immune response.
Project description:BackgroundThe Asian tiger mosquito, Aedes albopictus is currently an important vector for dengue, chikungunya and Zika virus, and its role in transmission of arthropod-borne viruses (arboviruses) may increase in the future due to its ability to colonize temperate regions. In contrast to Aedes aegypti, the dominant vector of dengue, chikungunya and Zika virus, genetic responses of Ae. albopictus upon infection with an arbovirus are not well characterized. Here we present a study of the changes in transcript expression in Ae. albopictus exposed to dengue virus serotype 2 via feeding on an artificial bloodmeal.Methodology/principal findingsWe isolated midguts and midgut-free carcasses of Ae. albopictus fed on bloodmeals containing dengue virus as well as controls fed on virus-free control meals at day 1 and day 5 post-feeding. We confirmed infection of midguts from mosquitoes sampled on day 5 post-feeding via RT-PCR. RNAseq analysis revealed dynamic modulation of the expression of several putative immunity and dengue virus-responsive genes, some of whose expression was verified by qRT-PCR. For example, a serine protease gene was up-regulated in the midgut at 1 day post infection, which may potentially enhance mosquito susceptibility to dengue infection, while 14 leucine-rich repeat genes, previously shown to be involved in mosquito antiviral defenses, were down-regulated in the carcass at 5 days post infection. The number of significantly modulated genes decreased over time in midguts and increased in carcasses.Conclusion/significanceDengue virus exposure results in the modulation of genes in a time- and site-specific manner. Previous literature on the interaction between mosquitoes and mosquito-borne pathogens suggests that most of the changes that occurred in Ae. albopictus exposed to DENV would favor virus infection. Many genes identified in this study warrant further characterization to understand their role in viral manipulation of and antiviral response of Ae. albopictus.
Project description:Dengue viruses (DENV) are considered one of the most important emerging pathogens and dengue disease is a global health threat. The geographic expansion of dengue viruses has led to co-circulation of all four dengue serotypes making it imperative that new DENV control strategies be devised.Here we characterize dengue serotype-specific innate immune responses in Aedes aegypti and Aedes albopictus using DENV from Puerto Rico (PR).Ae. aegypti and Ae. albopictus were infected with dengue serotype 1 and 2 isolated from Puerto Rico. DENV infected mosquito samples were collected and temporal change in expression of selected innate immune response pathway genes analyzed by quantitative real time PCR.The Toll pathway is involved in anti-dengue response in Ae. aegypti, and Ae. albopictus. Infections with PR DENV- 1 elicited a stronger response from genes of the Toll immune pathway than PR DENV-2 in Ae. aegypti but in infected Ae. albopictus expression of Toll pathway genes tended to be similar between the serotypes. Two genes (a ribosomal S5 protein gene and a nimrod-like gene) from Ae. albopictus were expressed in response to DENV.These studies revealed a role for antiviral genes in DENV serotype-specific interactions with DENV vectors, demonstrated that infections with DENV-2 can modulate the Toll immune response pathway in Ae. aegypti and elucidated candidate molecules that might be used to interfere with serotype specific vector-virus interactions.