Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating.
Ontology highlight
ABSTRACT: Nanoscale carbides enhance ultra-strong ceramics and show activity as high-performance catalysts. Traditional lengthy carburization methods for carbide syntheses usually result in coked surface, large particle size, and uncontrolled phase. Here, a flash Joule heating process is developed for ultrafast synthesis of carbide nanocrystals within 1 s. Various interstitial transition metal carbides (TiC, ZrC, HfC, VC, NbC, TaC, Cr2C3, MoC, and W2C) and covalent carbides (B4C and SiC) are produced using low-cost precursors. By controlling pulse voltages, phase-pure molybdenum carbides including β-Mo2C and metastable α-MoC1-x and η-MoC1-x are selectively synthesized, demonstrating the excellent phase engineering ability of the flash Joule heating by broadly tunable energy input that can exceed 3000 K coupled with kinetically controlled ultrafast cooling (>104 K s-1). Theoretical calculation reveals carbon vacancies as the driving factor for topotactic transition of carbide phases. The phase-dependent hydrogen evolution capability of molybdenum carbides is investigated with β-Mo2C showing the best performance.
SUBMITTER: Deng B
PROVIDER: S-EPMC8752793 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA