Unknown

Dataset Information

0

Spin mapping of intralayer antiferromagnetism and field-induced spin reorientation in monolayer CrTe2.


ABSTRACT: Intrinsic antiferromagnetism in van der Waals (vdW) monolayer (ML) crystals enriches our understanding of two-dimensional (2D) magnetic orders and presents several advantages over ferromagnetism in spintronic applications. However, studies of 2D intrinsic antiferromagnetism are sparse, owing to the lack of net magnetisation. Here, by combining spin-polarised scanning tunnelling microscopy and first-principles calculations, we investigate the magnetism of vdW ML CrTe2, which has been successfully grown through molecular-beam epitaxy. We observe a stable antiferromagnetic (AFM) order at the atomic scale in the ML crystal, whose bulk is ferromagnetic, and correlate its imaged zigzag spin texture with the atomic lattice structure. The AFM order exhibits an intriguing noncollinear spin reorientation under magnetic fields, consistent with its calculated moderate magnetic anisotropy. The findings of this study demonstrate the intricacy of 2D vdW magnetic materials and pave the way for their in-depth analysis.

SUBMITTER: Xian JJ 

PROVIDER: S-EPMC8752801 | biostudies-literature | 2022 Jan

REPOSITORIES: biostudies-literature

altmetric image

Publications

Spin mapping of intralayer antiferromagnetism and field-induced spin reorientation in monolayer CrTe<sub>2</sub>.

Xian Jing-Jing JJ   Wang Cong C   Nie Jin-Hua JH   Li Rui R   Han Mengjiao M   Lin Junhao J   Zhang Wen-Hao WH   Liu Zhen-Yu ZY   Zhang Zhi-Mo ZM   Miao Mao-Peng MP   Yi Yangfan Y   Wu Shiwei S   Chen Xiaodie X   Han Junbo J   Xia Zhengcai Z   Ji Wei W   Fu Ying-Shuang YS  

Nature communications 20220111 1


Intrinsic antiferromagnetism in van der Waals (vdW) monolayer (ML) crystals enriches our understanding of two-dimensional (2D) magnetic orders and presents several advantages over ferromagnetism in spintronic applications. However, studies of 2D intrinsic antiferromagnetism are sparse, owing to the lack of net magnetisation. Here, by combining spin-polarised scanning tunnelling microscopy and first-principles calculations, we investigate the magnetism of vdW ML CrTe<sub>2</sub>, which has been s  ...[more]

Similar Datasets

| S-EPMC10381943 | biostudies-literature
| S-EPMC4806309 | biostudies-literature
| S-EPMC10169834 | biostudies-literature
| S-EPMC11378283 | biostudies-literature
| S-EPMC7501285 | biostudies-literature
| S-EPMC10940636 | biostudies-literature
| S-EPMC6368433 | biostudies-literature
| S-EPMC8455656 | biostudies-literature
| S-EPMC6237123 | biostudies-literature
| S-EPMC7494910 | biostudies-literature