Unknown

Dataset Information

0

Customized Flagelliform Spidroins Form Spider Silk-like Fibers at pH 8.0 with Outstanding Tensile Strength.


ABSTRACT: Spider flagelliform silk shows the best extensibility among various types of silk, but its biomimetic preparation has not been much studied. Herein, five customized flagelliform spidroins (FlSps: S and NTDFl-Sn-CTDFl, n = 1-4), in which the repetitive region (S) and N-/C- terminal domains (NTDFl and CTDFl) are from the same spidroin and spider species, were produced recombinantly. The recombinant spidroins with terminal domains were able to form silk-like fibers with diameters of ∼5 μm by manual pulling at pH 8.0, where the secondary structure transformation occurred. The silk-like fibers from NTDFl-S4-CTDFl showed the highest tensile strength (∼250 MPa), while those ones with 1-3 S broke at a similar stress (∼180 MPa), suggesting that increasing the amounts of the repetitive region can improve the tensile strength, but a certain threshold might need to be reached. This study shows successful preparation of flagelliform silk-like fibers with good mechanical properties, providing general insights into efficient biomimetic preparations of spider silks.

SUBMITTER: Li X 

PROVIDER: S-EPMC8753598 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC3929182 | biostudies-literature
| S-EPMC6754431 | biostudies-literature
| S-EPMC6168590 | biostudies-literature
| S-EPMC9303884 | biostudies-literature
| S-EPMC5075943 | biostudies-literature
| S-EPMC3271896 | biostudies-literature
| S-EPMC6959368 | biostudies-literature
| S-EPMC7397010 | biostudies-literature
| S-EPMC7693878 | biostudies-literature
| S-EPMC5037812 | biostudies-literature