Ontology highlight
ABSTRACT: Background
Vibrio cholerae, a Gram-negative bacterium, is highly motile owing to the presence of a single polar flagellum. The global anaerobiosis response regulator, ArcA regulates the expression of virulence factors and enhance biofilm formation in V. cholerae. However, the function of ArcA for the motility of V. cholerae is yet to be elucidated. CytR, which represses nucleoside uptake and catabolism, is known to play a chief role in V. cholerae pathogenesis and flagellar synthesis but the mechanism that CytR influences motility is unclear.Results
In this study, we found that the ΔarcA mutant strain exhibited higher motility than the WT strain due to ArcA directly repressed flrA expression. We further discovered that CytR directly enhanced fliK expression, which explained why the ΔcytR mutant strain was retarded in motility. On the other hand, cytR was a direct ArcA target and cytR expression was directly repressed by ArcA. As expected, cytR expression was down-regulated.Conclusions
Overall, ArcA plays a critical role in V. cholerae motility by regulating flrA expression directly and fliK indirectly in the manner of cytR.
SUBMITTER: Li Y
PROVIDER: S-EPMC8753867 | biostudies-literature | 2022 Jan
REPOSITORIES: biostudies-literature
Li Yuehua Y Yan Junxiang J Guo Xueqian X Wang Xiaochen X Liu Fenxia F Cao Boyang B
BMC microbiology 20220112 1
<h4>Background</h4>Vibrio cholerae, a Gram-negative bacterium, is highly motile owing to the presence of a single polar flagellum. The global anaerobiosis response regulator, ArcA regulates the expression of virulence factors and enhance biofilm formation in V. cholerae. However, the function of ArcA for the motility of V. cholerae is yet to be elucidated. CytR, which represses nucleoside uptake and catabolism, is known to play a chief role in V. cholerae pathogenesis and flagellar synthesis but ...[more]