Ontology highlight
ABSTRACT: Background
Loneliness is a public health problem that is expected to rise during the COVID-19 pandemic, given the widespread policy of quarantine. The literature is unclear whether loneliness during COVID-19 is similar to those of non-pandemic seasons. This study examined the expression of loneliness on Twitter during COVID-19 pandemic, and identified key areas of loneliness across diverse communities.Methods
Twitter was searched for feeds that were:(1) in English; (2) posted from May 1, 2020 to July 1, 2020; (3) posted by individual users (not organisations); and (4) contained the words 'loneliness' and 'COVID-19'. A machine-learning approach (Topic Modeling) identified key topics from the Twitter feeds; Hierarchical Modeling identified overarching themes. Variations in the prevalence of the themes were examined over time and across the number of followers of the Twitter users.Results
4492 Twitter feeds were included and classified into 3 themes: (1) Community impact of loneliness during COVID-19; (2) Social distancing during COVID-19 and its effects on loneliness; and (3) Mental health effects of loneliness during COVID-19. The 3 themes demonstrated temporal variations. Particularly in Europe, Theme 1 showed a drastic reduction over time, with a corresponding rise in Theme 3. The themes also varied across number of followers. Highly influential users were more likely to talk about Theme 3 and less about Theme 2.Conclusions
The findings reflect close-to-real-time public sentiments on loneliness during the COVID-19 pandemic and demonstrated the potential usefulness of social media to keep tabs on evolving mental health issues. It also provides inspiration for potential interventions to address novel problems-such as loneliness-during COVID-19 pandemic.
SUBMITTER: Koh JX
PROVIDER: S-EPMC8754394 | biostudies-literature |
REPOSITORIES: biostudies-literature