Project description:Vaccine coverage is severely limited in developing countries due to inefficient protection of vaccine functionality as well as lack of patient compliance to receive the additional booster doses. Thus, there is an urgent need to design a thermostable vaccine delivery platform that also enables release of the bolus after predetermined time. Here, the formation of injectable and light-activatable polybubbles for vaccine delivery is reported. In vitro studies show that polybubbles enable delayed burst release, irrespective of cargo types, namely small molecule and antigen. The extracorporeal activation of polybubbles is achieved by incorporating near-infrared (NIR)-sensitive gold nanorods (AuNRs). Interestingly, light-activatable polybubbles can be used for on-demand burst release of cargo. In vitro, ex vivo, and in vivo studies demonstrate successful activation of AuNR-loaded polybubbles. Overall, the light-activatable polybubble technology can be used for on-demand delivery of various therapeutics including small molecule drugs, immunologically relevant protein, peptide antigens, and nucleic acids.
Project description:Delivering therapeutics to mucosal tissues such as the nasal and gastrointestinal tracts is highly desirable due to ease of access and dense vasculature. However, the mucus layer effectively captures and removes most therapeutic macromolecules and devices. In previous work, we have shown that nanoengineered microparticles (NEMPs) adhere through the mucus layer, exhibiting up to 1000 times the pull-off force of an unmodified microsphere, and showing greater adhesion than some chemical targeting means. In this paper, we demonstrate that nanotopography improves device adhesion in vivo, increasing retention time up to ten-fold over unmodified devices. Moreover, we observe considerable adhesion in several cell lines using an in vitro shear flow model, indicating that this approach is promising for numerous tissues. We then demonstrate that nanowire-mediated adhesion is highly robust to variation in nanowire surface charge and cellular structure and function, and we characterize particle loading and elution. We present a form of cytoadhesion that utilizes the physical interaction of nanoengineered surfaces with subcellular structures to produce a robust and versatile cytoadhesive for drug delivery. These nanoscale adhesive mechanisms are also relevant to fields such as tissue engineering and wound healing because they likely affect stem cell differentiation, cell remodeling, migration, etc.
Project description:Drug delivery systems have the potential to deliver high concentrations of drug to target areas on demand, while elsewhere and at other times encapsulating the drug, to limit unwanted actions. Here we show proof of concept in vivo and ex vivo tests of a novel drug delivery system based on hollow-gold nanoparticles tethered to liposomes (HGN-liposomes), which become transiently permeable when activated by optical or acoustic stimulation. We show that laser or ultrasound simulation of HGN-liposomes loaded with the GABAA receptor agonist, muscimol, triggers rapid and repeatable release in a sufficient concentration to inhibit neurons and suppress seizure activity. In particular, laser-stimulated release of muscimol from previously injected HGN-liposomes caused subsecond hyperpolarizations of the membrane potential of hippocampal pyramidal neurons, measured by whole cell intracellular recordings with patch electrodes. In hippocampal slices and hippocampal-entorhinal cortical wedges, seizure activity was immediately suppressed by muscimol release from HGN-liposomes triggered by laser or ultrasound pulses. After intravenous injection of HGN-liposomes in whole anesthetized rats, ultrasound stimulation applied to the brain through the dura attenuated the seizure activity induced by pentylenetetrazol. Ultrasound alone, or HGN-liposomes without ultrasound stimulation, had no effect. Intracerebrally-injected HGN-liposomes containing kainic acid retained their contents for at least one week, without damage to surrounding tissue. Thus, we demonstrate the feasibility of precise temporal control over exposure of neurons to the drug, potentially enabling therapeutic effects without continuous exposure. For future application, studies on the pharmacokinetics, pharmacodynamics, and toxicity of HGN-liposomes and their constituents, together with improved methods of targeting, are needed, to determine the utility and safety of the technology in humans.
Project description:Introduction: When using portable oxygen, a demand oxygen delivery system (DODS), which senses the beginning of inhalation and delivers a bolus of oxygen, is often used. However, conventional DODS may not supply sufficient oxygen when reduced tidal flow fails to trigger the flow sensor. Recently, "auto-DODS," which detects the negative pressure of inhalation and switches among 3 trigger sensitivity levels (standard, high, and extra high), has been developed to improve the efficacy of oxygenation. An auto-DODS can also supply pulsed-flow oxygen when it detects apnea, whereas a conventional DODS has only standard sensitivity. This randomized, open-label, crossover pilot study compared the performance of an auto-DODS with that of a conventional DODS.Methods: We recruited patients with chronic obstructive pulmonary disease (COPD) or interstitial pneumonia receiving long-term oxygen therapy. Interventions were performed on 2 different days for each participant. On each day, an auto-DODS or a conventional DODS were tested at rest for 30 minutes and during the 6-minute walk test. The primary outcome was mean oxygen saturation (SpO2). Secondary outcomes were the ratios of time for each sensitivity level and pulsed-flow oxygen when using the auto-DODS, total time desaturated below SpO2 90%, percentage of time desaturated below SpO2 90%, minimum SpO2, mean and maximum pulse rate, six-minute walk distance, recovery time after 6-minute walk test, modified Borg scale, comfort, and discomfort index.Results: When using the auto-DODS at rest, a high or extra high sensitivity level was observed in addition to standard sensitivity in 6 of 8 participants. During the 6-minute walk test, only standard sensitivity was observed in 6 participants. Mean SpO2 differences between the auto-DODS and conventional DODS at rest and during the 6-minute walk test were -0.6 [-4.5, 3.4] and 0.0 [-2.5, 2.5] ([95% confidence interval]), respectively, neither of which were significant (P = .73 and P = .99). There were no significant differences in secondary outcomes. There were no adverse events when using the auto-DODS.Conclusions: This study showed that the auto-DODS did not show superiority in oxygenation either at rest or during exercise compared to a conventional DODS. The auto-DODS was shown to supply oxygen safely and detect inhalations with various trigger sensitivities.
Project description:BackgroundThe purposes of this study were three-fold: (i) to determine the contribution of known genes to the causation of a broad-spectrum of pediatric drug-resistant epilepsy (DRE), (ii) to compare the diagnostic yield and cost among different next-generation sequencing (NGS) approaches, and especially (iii) to assess how NGS approaches can benefit patients by improving diagnosis and treatment efficiency.MethodsThis study enrolled 273 pediatric DRE patients with no obvious acquired etiology. Seventy-four patients underwent whole-exome sequencing (WES), 141 patients had epilepsy-related gene panel testing, and another 58 patients had clinical WES gene panel testing. We obtained these patients' seizure and hospitalization frequency by periodic follow-up phone calls and outpatient visits.ResultsGenetic diagnosis was achieved in 86 patients (31.5%) and involved 93 likely disease-causing mutations in 33 genes. In this study, the detection rates of the epilepsy-related gene panel, the clinical WES gene panel, and WES were 32.6% (46/141), 44.8% (26/58), and 17.3% (13/74), respectively. Moreover, 34 patients accepted corrective therapy according to their mutant genes, after which 52.9% (18/34) became seizure-free and 38.2% (13/34) achieved seizure reduction. In the end, patients with either positive or negative genetic results had significantly fewer hospitalization incidents (times/half year) than before (positive genetic results group 0.58 ± 1.14 vs 0.10 ± 0.26; negative genetic results group 0.72 ± 1.65 vs 0.12 ± 0.33).ConclusionsThese results offer further proof that NGS approaches represent powerful tools for establishing a definitive diagnosis. Moreover, this study indicated how NGS can improve treatment efficacy and reduce hospitalization in children with DRE.
Project description:Senescent cells accumulate in many ageing-associated diseases such as pulmonary fibrosis, and targeting these cells has recently emerged as a promising therapeutic approach. Here, we take advantage of the high β-galactosidase activity of senescent cells to design a targeted drug delivery system based on the encapsulation of drugs with galacto-oligosaccharides (GalNP beads). In this experiment we show that gal-encapsulated rhodamine target senescent cells in the context of pulmonary fibrosis in mice.
Project description:Porous biomaterials have been widely used as scaffolds in tissue engineering and cell-based therapies. The release of biological agents from conventional porous scaffolds is typically governed by molecular diffusion, material degradation, and cell migration, which do not allow for dynamic external regulation. We present a new active porous scaffold that can be remotely controlled by a magnetic field to deliver various biological agents on demand. The active porous scaffold, in the form of a macroporous ferrogel, gives a large deformation and volume change of over 70% under a moderate magnetic field. The deformation and volume variation allows a new mechanism to trigger and enhance the release of various drugs including mitoxantrone, plasmid DNA, and a chemokine from the scaffold. The porous scaffold can also act as a depot of various cells, whose release can be controlled by external magnetic fields.
Project description:Multiple sclerosis is a heterogenous disease. Although several EMA-approved disease-modifying treatments including biopharmaceuticals are available, their efficacy is limited, and a certain percentage of patients are always nonresponsive. Drug efficacy monitoring is an important tool to identify these nonresponsive patients early on. Currently, detection of antidrug antibodies and quantification of biological activity are used as methods of efficacy monitoring for interferon beta and natalizumab therapies. For natalizumab and alemtuzumab treatments, drug level quantification could be an essential component of the overall disease management. Thus, utilization and development of strategies to determine treatment response are vital aspects of multiple sclerosis management given the tremendous clinical and economic promise of this tool.
Project description:Focal epilepsy represents one of the most common chronic CNS diseases. The high incidence of drug resistance, devastating comorbidities and insufficient responsiveness to surgery pose unmet medical challenges. In the quest of novel, disease-modifying treatment strategies neuropeptides represent promising candidates. Here we provide the "proof of concept" that gene therapy by adeno-associated virus (AAV) vector transduction of preprodynorphin into the epileptogenic focus of well-accepted mouse and rat models for temporal lobe epilepsy leads to suppression of seizures over months. The debilitating long-term decline of spatial learning and memory is prevented. In human hippocampal slices obtained form epilepsy surgery, dynorphins suppressed seizure-like activity, suggestive of a high potential for clinical translation. AAV-delivered preprodynorphin expression is focally and neuronally restricted and release is dependent on high-frequency stimulation, as it occurs at the onset of seizures. The novel format of "release on demand" dynorphin delivery is viewed as a key to prevent habituation and to minimize the risk of adverse effects, leading to long-term suppression of seizures and of their devastating sequel.
Project description:Nanocomposite membranes based on thermosensitive, poly(N-isopropylacrylamide)-based nanogels and magnetite nanoparticles have been designed to achieve "on-demand" drug delivery upon the application of an oscillating magnetic field. On-off release of sodium fluorescein over multiple magnetic cycles has been successfully demonstrated using prototype membrane-based devices. The total drug dose delivered was directly proportional to the duration of the "on" pulse. The membranes were noncytotoxic, were biocompatible, and retained their switchable flux properties after 45 days of subcutaneous implantation.