Project description:Older patients with acute myeloid leukemia (AML) have worse rates of complete remission and shorter overall survival than younger patients. The epigenetic modifier CC-486 is an oral formulation of azacitidine with promising clinical activity in patients with AML in Phase I studies. The Phase III, randomized, double-blind, placebo-controlled QUAZAR AML Maintenance trial (CC-486-AML-001) examines CC-486 maintenance therapy (300 mg/day for 14 days of 28-day treatment cycles) for patients aged ?55 years with AML in first complete remission. The primary end point is overall survival. Secondary end points include relapse-free survival, safety, health-related quality of life and healthcare resource utilization. This trial will investigate whether CC-486 maintenance can prolong remission and improve survival for older patients with AML.
Project description:The phase 3 VIALE-A trial reported that venetoclax in combination with azacitidine significantly improved response rates and overall survival compared with azacitidine alone in older, unfit patients with previously untreated acute myeloid leukemia (AML). However, the cost-effectiveness of azacitidine-venetoclax in this clinical setting is unknown. In this study, we constructed a partitioned survival model to compare the cost and effectiveness of azacitidine-venetoclax with azacitidine alone in previously untreated AML. Event-free and overall survival curves for each treatment strategy were derived from the VIALE-A trial using parametric survival modeling. We calculated the incremental cost-effectiveness ratio (ICER) of azacitidine-venetoclax from a US-payer perspective. Azacitidine-venetoclax was associated with an improvement of 0.61 quality-adjusted life-years (QALYs) compared with azacitidine alone. However, the combination led to significantly higher lifetime health care costs (incremental cost, $159 595), resulting in an ICER of $260 343 per QALY gained. The price of venetoclax would need to decrease by 60% for azacitidine-venetoclax to be cost-effective at a willingness-to-pay threshold of $150 000 per QALY. These data suggest that use of azacitidine-venetoclax for previously untreated AML patients who are ineligible for intensive chemotherapy is unlikely to be cost-effective under current pricing. Significant price reduction of venetoclax would be required to reduce the ICER to a more widely acceptable value.
Project description:To determine the maximum-tolerated dose (MTD), safety, pharmacokinetic and pharmacodynamic profiles, and clinical activity of an oral formulation of azacitidine in patients with myelodysplastic syndromes (MDSs), chronic myelomonocytic leukemia (CMML), or acute myeloid leukemia (AML).Patients received 1 cycle of subcutaneous (SC) azacitidine (75 mg/m2) on the first 7 days of cycle 1, followed by oral azacitidine daily (120 to 600 mg) on the first 7 days of each additional 28-day cycle. Pharmacokinetic and pharmacodynamic profiles were evaluated during cycles 1 and 2. Adverse events and hematologic responses were recorded. Cross-over to SC azacitidine was permitted for nonresponders who received ? 6 cycles of oral azacitidine.Overall, 41 patients received SC and oral azacitidine (MDSs, n = 29; CMML, n = 4; AML, n = 8). Dose-limiting toxicity (grade 3/4 diarrhea) occurred at the 600-mg dose and MTD was 480 mg. Most common grade 3/4 adverse events were diarrhea (12.2%), nausea (7.3%), vomiting (7.3%), febrile neutropenia (19.5%), and fatigue (9.8%). Azacitidine exposure increased with escalating oral doses. Mean relative oral bioavailability ranged from 6.3% to 20%. Oral and SC azacitidine decreased DNA methylation in blood, with maximum effect at day 15 of each cycle. Hematologic responses occurred in patients with MDSs and CMML. Overall response rate (i.e., complete remission, hematologic improvement, or RBC or platelet transfusion independence) was 35% in previously treated patients and 73% in previously untreated patients.Oral azacitidine was bioavailable and demonstrated biologic and clinical activity in patients with MDSs and CMML.
Project description:The myelodysplastic syndromes (MDS) comprise a heterogeneous group of clonal myeloid malignancies characterized by multilineage cytopenias, recurrent cytogenetic abnormalities, and risk of progression to acute myeloid leukemia (AML). AML, which can occur de novo as well as secondary to MDS, is characterized by malignant clones of myeloid lineage in the bone marrow and peripheral blood, with dissemination into tissues. The cytidine nucleoside analog and epigenetic modifier azacitidine is approved in the U.S. for the treatment of all French-American-British subtypes of MDS and in many countries for the treatment of AML with 20%-30% blasts and multilineage dysplasia according to the World Health Organization classification. Benefits of azacitidine treatment of patients with AML with >30% blasts have also been shown in a recent phase III trial. Oral administration of azacitidine may enhance patient convenience, eliminate injection-site reactions, allow for alternative dosing and scheduling, and enable long-term treatment. Phase I studies with oral azacitidine (CC-486) have shown biological activity, clinical responses, and tolerability in patients with MDS and AML. Extended dosing schedules of oral azacitidine (for 14 or 21 days of 28-day cycles) are currently under investigation as frontline therapy in patients with lower risk MDS, as maintenance therapy for patients with AML not eligible for stem cell transplant, and as maintenance therapy for patients with MDS or AML following stem cell transplant. This review presents clinical data supporting the use of injectable azacitidine in MDS and AML and examines the rationale for and results of the clinical development of oral azacitidine.
Project description:The treatment of older patients with acute myeloid leukemia that is secondary to previous myelodysplastic syndrome, myeloproliferative neoplasm, or prior cytotoxic exposure remains unsatisfactory. We compared 92 and 107 patients treated, respectively, with intensive chemotherapy or azacitidine within two centres. Diagnoses were 37.5% post-myelodysplastic syndrome, 17.4% post-myeloproliferative neoplasia, and 45.1% therapy-related acute myeloid leukemia. Patients treated by chemotherapy had less adverse cytogenetics, higher white blood-cell counts, and were younger: the latter two being independent factors entered into the multivariate analyses. Median overall-survival times with chemotherapy and azacitidine were 9.6 (IQR: 3.6-22.8) and 10.8 months (IQR: 4.8-26.4), respectively (p = 0.899). Adjusted time-dependent analyses showed that, before 1.6 years post-treatment, there were no differences in survival times between chemotherapy and azacitidine treatments whereas, after this time-point, patients that received chemotherapy had a lower risk of death compared to those that received azacitidine (adjusted HR 0.61, 95%CI: 0.38-0.99 at 1.6 years). There were no interactions between treatment arms and secondary acute myeloid leukemia subtypes in all multivariate analyses, indicating that the treatments had similar effects in all three subtypes. Although a comparison between chemotherapy and azacitidine remains challenging, azacitidine represents a valuable alternative to chemotherapy in older patients that have secondary acute myeloid leukemia because it provides similar midterm outcomes with less toxicity.
Project description:FLT3-ITD is a constitutively activated variant of the FLT3 tyrosine kinase receptor. Its expression in acute myeloid leukemia (AML) is associated with a poor prognosis. Due to this, the development of tyrosine kinase inhibitors (TKI) blocking FLT3-ITD became a rational therapeutic concept. This review describes key milestones in the clinical development of different FLT3-specific TKI with a particular focus on FLT3-TKI maintenance therapy in remission after allogeneic hematopoietic stem cell transplantation (HCT). Recent evidence from randomized trials using sorafenib in FLT3-ITD mutated AML provided a proof of concept that targeted post-HCT maintenance therapy could become a new treatment paradigm in AML.
Project description:BackgroundCurrent strategies for risk stratification of patients with acute myeloid leukemia assign approximately 40% of patients to the intermediate-risk group, where uncertainty about optimal therapy still persists.ObjectiveThe objective of this study was to assess the cost effectiveness of a HMGA2 prognostic test based on HMGA2+/HMGA2- expression, which improves genetic risk stratification in acute myeloid leukemia, and compare this test with the current standard of care in Canada.MethodsA cost-effectiveness model was developed from the Canadian National Healthcare Service and societal perspective using data from the Quebec Leukemia Cell Bank, published literature, and physician surveys. The model includes a lifetime horizon assessing the HMGA2 test vs. standard of care.ResultsThe HMGA2 test outperformed the standard of care at all time horizons culminating with estimated improvements of 1.92 and 3.12 months in leukemia-free survival and overall survival, respectively. Costs associated with the HMGA2 test were consistently lower, except diagnostic costs, routine medical costs, and costs related to infections and false positives. From a societal perspective, total lifetime costs were $161,358 CAD and $151,908 CAD with the standard of care and the HMGA2 test, respectively. The incremental quality-adjusted life-year gain was 0.138, which led to dominance over the standard of care. Deterministic sensitivity analyses confirmed the results of the base-case scenario. Probabilistic sensitivity analyses revealed that for a willingness-to-pay threshold of $100,000 CAD, the probability of cost effectiveness was 87.19%.ConclusionsThe HMGA2 test is estimated to improve leukemia-free survival and overall survival outcomes, and yield costs savings from a healthcare system and societal perspective.
Project description:Relapse remains the main cause of treatment failure in acute myeloid leukemia (AML) undergoing allogeneic hematopoietic stem cell transplantation (allo-HSCT). Emerging evidence has demonstrated that AML patients might benefit from maintenance therapy post-transplantation, especially for high-risk AML patients. In this mini-review, we will summarize targeted drugs, such as hypomethylating agents, FLT3 inhibitors and isocitrate dehydrogenase inhibitors, as maintenance therapy post-transplantation in AML patients undergoing allo-HSCT.
Project description:Myelodysplastic syndrome (MDS) defines a group of heterogeneous hematologic malignancies that often progresses to acute myeloid leukemia (AML). The leading treatment for high-risk MDS patients is azacitidine (Aza, Vidaza®), but a significant proportion of patients are refractory and all patients eventually relapse after an undefined time period. Therefore, new therapies for MDS are urgently needed. We present here evidence that acadesine (Aca, Acadra®), a nucleoside analog exerts potent anti-leukemic effects in both Aza-sensitive (OCI-M2S) and resistant (OCI-M2R) MDS/AML cell lines in vitro. Aca also exerts potent anti-leukemic effect on bone marrow cells from MDS/AML patients ex-vivo. The effect of Aca on MDS/AML cell line proliferation does not rely on apoptosis induction. It is also noteworthy that Aca is efficient to kill MDS cells in a co-culture model with human medullary stromal cell lines, that mimics better the interaction occurring in the bone marrow. These initial findings led us to initiate a phase I/II clinical trial using Acadra® in 12 Aza refractory MDS/AML patients. Despite a very good response in one out 4 patients, we stopped this trial because the highest Aca dose (210 mg/kg) caused serious renal side effects in several patients. In conclusion, the side effects of high Aca doses preclude its use in patients with strong comorbidities.
Project description:AimsMidostaurin (MIDO) has been proposed for the treatment of newly-diagnosed adult patients with FMS-like tyrosine kinase 3 mutation-positive (FLT3+) acute myeloid leukemia (AML) in combination with standard chemotherapy. The cost-effectiveness of MIDO and standard of care (SOC) followed by MIDO monotherapy was compared to SOC alone for newly-diagnosed FLT3+?AML in the UK.MethodsA partitioned survival model was developed from a UK public healthcare system perspective to compare the cost-effectiveness of MIDO plus SOC and SOC over a lifetime horizon. The model included the following health states/partitions: induction, consolidation, monotherapy, complete remission (CR), relapse, stem cell transplantation (SCT), SCT recovery, and post-SCT recovery. Data on CR, overall survival, and adverse events were obtained from a Phase III clinical trial. Overall survival was extrapolated beyond the trial horizon using a 'cure model' approach and data from the Office for National Statistics. Utilities were identified via a systematic review. Routine care utilization was obtained from the National Institute for Health and Care Excellence single technology appraisal for azacitidine in AML (TA399). The costs of drugs and administration, adverse events, hospitalizations, physician visits, and end-of-life care were incorporated.ResultsIncremental life years (LYs) and quality-adjusted life years (QALYs) gained by patients on MIDO and SOC versus SOC were 1.67 and 1.47, respectively. At an incremental cost of £54,072 over a lifetime horizon, the ICER was £32,465 per LY and £36,826 per QALY. Sensitivity analyses were generally consistent with the base case findings.ConclusionsWith limited treatments in FLT3+?AML, MIDO represents a clinically significant advance in the management of newly-diagnosed AML. Using a threshold of £50,000 per QALY for end-of-life treatment, MIDO was shown to be a cost-effective option for newly-diagnosed FLT3+?AML.