Unknown

Dataset Information

0

A stochastic contact network model for assessing outbreak risk of COVID-19 in workplaces.


ABSTRACT: The COVID-19 pandemic has drastically shifted the way people work. While many businesses can operate remotely, a large number of jobs can only be performed on-site. Moreover as businesses create plans for bringing workers back on-site, they are in need of tools to assess the risk of COVID-19 for their employees in the workplaces. This study aims to fill the gap in risk modeling of COVID-19 outbreaks in facilities like offices and warehouses. We propose a simulation-based stochastic contact network model to assess the cumulative incidence in workplaces. First-generation cases are introduced as a Bernoulli random variable using the local daily new case rate as the success rate. Contact networks are established through randomly sampled daily contacts for each of the first-generation cases and successful transmissions are established based on a randomized secondary attack rate (SAR). Modification factors are provided for SAR based on changes in airflow, speaking volume, and speaking activity within a facility. Control measures such as mask wearing are incorporated through modifications in SAR. We validated the model by comparing the distribution of cumulative incidence in model simulations against real-world outbreaks in workplaces and nursing homes. The comparisons support the model's validity for estimating cumulative incidences for short forecasting periods of up to 15 days. We believe that the current study presents an effective tool for providing short-term forecasts of COVID-19 cases for workplaces and for quantifying the effectiveness of various control measures. The open source model code is made available at github.com/abhineetgupta/covid-workplace-risk.

SUBMITTER: Guo X 

PROVIDER: S-EPMC8759694 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC10591376 | biostudies-literature
| PRJNA615625 | ENA
| S-EPMC7725788 | biostudies-literature
| S-EPMC7505685 | biostudies-literature
| S-EPMC7537669 | biostudies-literature
| S-EPMC520756 | biostudies-literature
| PRJEB40188 | ENA
| S-EPMC9321440 | biostudies-literature
| S-EPMC9088818 | biostudies-literature
| S-EPMC10124705 | biostudies-literature