Project description:Thermoelectric properties of a model skyrmion crystal were theoretically investigated, and it was found that its large anomalous Hall conductivity, corresponding to large Chern numbers induced by its peculiar spin structure leads to a large transverse thermoelectric voltage through the anomalous Nernst effect. This implies the possibility of finding good thermoelectric materials among skyrmion systems, and thus motivates our quests for them by means of the first-principles calculations as were employed in this study.
Project description:The interplay between topology and magnetism has recently sparked the frontier studies of magnetic topological materials that exhibit intriguing anomalous Hall and Nernst effects owning to the large intrinsic Berry curvature (BC). To better understand the anomalous quantum transport properties of these materials and their implications for future applications such as electronic and thermoelectric devices, it is crucial to discover more novel material platforms for performing anomalous transverse transport studies. Here, it is experimentally demonstrated that low-cost Fe-based Heusler compounds exhibit large anomalous Hall and Nernst effects. An anomalous Hall conductivity of 250-750 S cm-1 and Nernst thermopower of above 2 µV K-1 are observed near room temperature. The positive effect of anti-site disorder on the anomalous Hall transport is revealed. Considering the very high Curie temperature (nearly 1000 K), larger Nernst thermopowers at high temperatures are expected owing to the existing magnetic order and the intrinsic BC. This work provides a background for developing low-cost Fe-based Heusler compounds as a new material platform for anomalous transport studies and applications, in particular, near and above room temperature.
Project description:The utilization of ferromagnetic (FM) materials in thermoelectric devices allows one to have a simpler structure and/or independent control of electric and thermal conductivities, which may further remove obstacles for this technology to be realized. The thermoelectricity in FM/non-magnet (NM) heterostructures using an optical heating source is studied as a function of NM materials and a number of multilayers. It is observed that the overall thermoelectric signal in those structures which is contributed by spin Seebeck effect and anomalous Nernst effect (ANE) is enhanced by a proper selection of NM materials with a spin Hall angle that matches to the sign of the ANE. Moreover, by an increase of the number of multilayer, the thermoelectric voltage is enlarged further and the device resistance is reduced, simultaneously. The experimental observation of the improvement of thermoelectric properties may pave the way for the realization of magnetic-(or spin-) based thermoelectric devices.
Project description:Thermoelectric modules are a promising approach to energy harvesting and efficient cooling. In addition to the longitudinal Seebeck effect, transverse devices utilizing the anomalous Nernst effect (ANE) have recently attracted interest. For high conversion efficiency, it is required that the material have a large ANE thermoelectric power and low electrical resistance, which lead to the conductivity of the ANE. ANE is usually explained in terms of intrinsic contributions from Berry curvature. Our observations suggest that extrinsic contributions also matter. Studying single-crystal manganese-bismuth (MnBi), we find a high ANE thermopower (∼10 μV/K) under 0.6 T at 80 K, and a transverse thermoelectric conductivity of over 40 A/Km. With insight from theoretical calculations, we attribute this large ANE predominantly to a new advective magnon contribution arising from magnon-electron spin-angular momentum transfer. We propose that introducing a large spin-orbit coupling into ferromagnetic materials may enhance the ANE through the extrinsic contribution of magnons.
Project description:The origin of anomalous Hall effect (AHE) in magnetic materials is one of the most intriguing aspects in condensed matter physics and has been a controversial topic for a long time. Recent studies indicate that the intrinsic AHE is closely related to the Berry curvature of occupied electronic states. In a magnetic Weyl semimetal with broken time-reversal symmetry, there are significant contributions to Berry curvature around Weyl nodes, possibly leading to a large intrinsic AHE. Here, we report the quite large AHE in the half-metallic ferromagnet Co3Sn2S2 single crystal. By systematically mapping out the electronic structure of Co3Sn2S2 both theoretically and experimentally, we demonstrate that the intrinsic AHE from the Weyl fermions near the Fermi energy is dominating. The intrinsic anomalous Hall conductivity depends linearly on the magnetization and can be reproduced by theoretical simulation, in which the Weyl nodes monotonically move with the constrained magnetic moment on Co atom.
Project description:The anomalous Nernst effect in nanostructured magnetic materials is a key phenomenon to optimally control and employ the internal energy dissipated in electronic devices, being dependent on, for instance, the magnetic anisotropy of the active element. Thereby, here, we report a theoretical and experimental investigation of the magnetic properties and anomalous Nernst effect in a flexible magnetostrictive film with induced uniaxial magnetic anisotropy and under external stress. Specifically, we calculate the magnetization behavior and the thermoelectric voltage response from a theoretical approach for a planar geometry, with magnetic free energy density that takes into account the induced uniaxial and magnetoelastic anisotropy contributions. Experimentally, we verify modifications of the effective magnetic anisotropy by changing the external stress, and explore the anomalous Nernst effect, a powerful tool to investigate the magnetic properties of magnetostrictive materials. We find quantitative agreement between experiment and numerical calculations, thus elucidating the magnetic behavior and thermoelectric voltage response. Besides, we provide evidence to confirm the validity of the theoretical approach to describe the magnetic properties and anomalous Nernst effect in ferromagnetic magnetostrictive films having uniaxial magnetic anisotropy and submitted to external stress. Hence, the results place flexible magnetostrictive systems as promising candidates for active elements in functionalized touch electronic devices.
Project description:Magnetic Weyl semimetals with broken time-reversal symmetry are expected to generate strong intrinsic anomalous Hall effects, due to their large Berry curvature. Here, we report a magnetic Weyl semimetal candidate, Co3Sn2S2, with a quasi-two-dimensional crystal structure consisting of stacked Kagomé lattices. This lattice provides an excellent platform for hosting exotic topological quantum states. We observe a negative magnetoresistance that is consistent with the chiral anomaly expected from the presence of Weyl nodes close to the Fermi level. The anomalous Hall conductivity is robust against both increased temperature and charge conductivity, which corroborates the intrinsic Berry-curvature mechanism in momentum space. Owing to the low carrier density in this material and the significantly enhanced Berry curvature from its band structure, the anomalous Hall conductivity and the anomalous Hall angle simultaneously reach 1130 ?-1 cm-1 and 20%, respectively, an order of magnitude larger than typical magnetic systems. Combining the Kagomé-lattice structure and the out-of-plane ferromagnetic order of Co3Sn2S2, we expect that this material is an excellent candidate for observation of the quantum anomalous Hall state in the two-dimensional limit.
Project description:The anomalous Nernst effect (ANE) is a thermomagnetic phenomenon with potential applications in thermal energy harvesting. While many recent works studied the approaches to increase the ANE coefficient of materials, relatively little effort was devoted to increasing the power supplied by the effect. Here, we demonstrate a nanofabricated device with record power density generated by the ANE. To accomplish this, we fabricate micrometer-sized devices in which the thermal gradient is 3 orders of magnitude higher than conventional macroscopic devices. In addition, we use Co/Pt multilayers, a system characterized by a high ANE thermopower (∼1 μV/K), low electrical resistivity, and perpendicular magnetic anisotropy. These innovations allow us to obtain power densities of around 13 ± 2 W/cm3. We believe that this design may find uses in harvesting wasted energy, e.g., in electronic devices.
Project description:The anomalous Hall effect, observed in conducting ferromagnets with broken time-reversal symmetry, offers the possibility to couple spin and orbital degrees of freedom of electrons in ferromagnets. In addition to charge, the anomalous Hall effect also leads to spin accumulation at the surfaces perpendicular to both the current and magnetization direction. Here, we experimentally demonstrate that the spin accumulation, subsequent spin backflow, and spin-charge conversion can give rise to a different type of spin current-related spin current related magnetoresistance, dubbed here as the anomalous Hall magnetoresistance, which has the same angular dependence as the recently discovered spin Hall magnetoresistance. The anomalous Hall magnetoresistance is observed in four types of samples: co-sputtered (Fe1-xMn x )0.6Pt0.4, Fe1-xMn x /Pt multilayer, Fe1-xMn x with x?=?0.17-0.65 and Fe, and analyzed using the drift-diffusion model. Our results provide an alternative route to study charge-spin conversion in ferromagnets and to exploit it for potential spintronic applications.
Project description:Co[Formula: see text]Sn[Formula: see text]S[Formula: see text] is a ferromagnetic Weyl semimetal that has been the subject of intense scientific interest due to its large anomalous Hall effect. We show that the coupling of this material's topological properties to its magnetic texture leads to a strongly exchange biased anomalous Hall effect. We argue that this is likely caused by the coexistence of ferromagnetism and geometric frustration intrinsic to the kagome network of magnetic ions, giving rise to spin-glass behavior and an exchange bias.