Project description:Microwave photonics offers transformative capabilities for ultra-wideband electronic signal processing and frequency synthesis with record-low phase noise levels. Despite the intrinsic bandwidth of optical systems operating at ~200 THz carrier frequencies, many schemes for high-performance photonics-based microwave generation lack broadband tunability, and experience tradeoffs between noise level, complexity, and frequency. An alternative approach uses direct frequency down-mixing of two tunable semiconductor lasers on a fast photodiode. This form of optical heterodyning is frequency-agile, but experimental realizations have been hindered by the relatively high noise of free-running lasers. Here, we demonstrate a heterodyne synthesizer based on ultralow-noise self-injection-locked lasers, enabling highly-coherent, photonics-based microwave and millimeter-wave generation. Continuously-tunable operation is realized from 1-104 GHz, with constant phase noise of -109 dBc/Hz at 100 kHz offset from carrier. To explore its practical utility, we leverage this photonic source as the local oscillator within a 95-GHz frequency-modulated continuous wave (FMCW) radar. Through field testing, we observe dramatic reduction in phase-noise-related Doppler and ranging artifacts as compared to the radar's existing electronic synthesizer. These results establish strong potential for coherent heterodyne millimeter-wave generation, opening the door to a variety of future applications including high-dynamic range remote sensing, wideband wireless communications, and THz spectroscopy.
Project description:5G communications require a multi Gb/s data transmission in its small cells. For this purpose millimeter wave (mm-wave) RF signals are the best solutions to be utilized for high speed data transmission. Generation of these high frequency RF signals is challenging in electrical domain therefore photonic generation of these signals is more studied. In this work, a photonic based simple and robust method for generating millimeter waves applicable in 5G access fronthaul is presented. Besides generating of the mm-wave signal in the 60 GHz frequency band the radio over fiber (RoF) system for transmission of orthogonal frequency division multiplexing (OFDM) with 5 GHz bandwidth is presented. For the purpose of wireless transmission for 5G application the required antenna is designed and developed. The total system performance in one small cell was studied and the error vector magnitude (EVM) of the system was evaluated.
Project description:This dataset contains complex signals coming from a mmWave FMCW radar system. Signals were acquired during a measurement campaign taken indoor and aimed to assess people's different ways of walking. Measurement setup and devices are described. The dataset consists of the acquisitions of six different types of activities, performed by 29 subjects who repeat each activity several times. Therefore, the dataset contains multiple different experiments for each activity, for a total of 231 acquisitions. The subjects walk without any constraint or do not follow any pattern, thus making this dataset useful not only for human gait recognition but also to evaluate the performance of different radar data processing algorithms.
Project description:The development of well-adhering, easily producible photonic reflective coatings is still a challenge. Here, an easy-to-produce, industrial viable process is reported that uses a primer layer of the so-called type II photoinitiator to obtain an excellent adhesion between a plastic substrate and one-dimensional (1D) photonic liquid crystalline coatings. Furthermore, a good alignment of the reactive cholesteric liquid crystal mixture is obtained using a bar-coating process, without alignment layers or surfactants. After photopolymerization, cross-hatch tape tests show a good adhesion of the photonic coating having a reflection band of 50% transmission with almost no scattering. Additionally, we demonstrate the ability to create well-adhering ∼100% reflective coatings by coating double layers and the ability to create single-layered cholesteric broadband reflectors using solely a reactivity gradient created by the primer layer. Our new interfacial method gives new opportunities to use reflecting 1D photonic coatings in industrial processes and applications and allows the bonding of almost any polymer to a plastic substrate.
Project description:A clear understanding of the response of biological systems to millimeter waves exposure is of increasing interest for the scientific community due to the recent convincing use of these radiations in the ultrafast wireless communications. Here we report a deuterium nuclear magnetic resonance spectroscopy (²H-NMR) investigation on the effects of millimeter waves in the 53-78 GHz range on phosphocholine bio-mimetic membranes. Millimeter waves significantly affect the polar interface of the membrane causing a decrease of the heavy water quadrupole splitting. This effect is as important as inducing the transition from the fluid to the gel phase when the membrane exposure occurs in the neighborhood of the transition point. On the molecular level, the above effect can be well explained by membrane dehydration induced by the radiation.
Project description:Interactions between millimeter waves (MMWs) and biological systems have received increasing attention due to the growing use of MMW radiation in technologies ranging from experimental medical devices to telecommunications and airport security. Studies have shown that MMW exposure alters cellular function, especially in neurons and muscles. However, the biophysical mechanisms underlying such effects are still poorly understood. Due to the high aqueous absorbance of MMW, thermal mechanisms are likely. However, nonthermal mechanisms based on resonance effects have also been postulated. We studied MMW stimulation in a simplified preparation comprising Xenopus laevis oocytes expressing proteins that underlie membrane excitability. Using electrophysiological recordings simultaneously with 60 GHz stimulation, we observed changes in the kinetics and activity levels of voltage-gated potassium and sodium channels and a sodium-potassium pump that are consistent with a thermal mechanism. Furthermore, we showed that MMW stimulation significantly increased the action potential firing rate in oocytes coexpressing voltage-gated sodium and potassium channels, as predicted by thermal terms in the Hodgkin-Huxley model of neurons. Our results suggest that MMW stimulation produces significant thermally mediated effects on excitable cells via basic thermodynamic mechanisms that must be taken into account in the study and use of MMW radiation in biological systems.
Project description:Photomodulators for mm-wave and THz radiation are an essential component for many imaging and signal processing applications. While a myriad of schemes have been devised to enhance photomodulation by enhancing the light-matter interaction, there has been less focus on the photoconductive materials themselves, which are often the limiting factor. Here, we present an approach to increase the photomodulation efficiency of silicon by orders of magnitude, using post treatment of off-the-shelf silicon wafers. The increase in efficiency removes the need for bulky and costly amplified laser sources, and creates the potential for compact and cost-effective modulators for real-world applications. By passivating the surfaces of long bulk-lifetime silicon wafers with Al2O3, the recombination of the photoexcited carriers at the surfaces is mostly eliminated. This results in vastly longer excess carrier lifetimes (up to ~50 ms), with corresponding increases in photoconductivity. The resulting modulators are highly efficient, with the transmission through them being reduced from ~90% to <10% over a narrow frequency band with a continuous wave excitation intensity of just 10 Wm-2, whilst modulation factors of greater than 80% can be achieved over a broad band with similar intensities. We also discuss the limitations of such long-lifetime modulators for applications where the switching speed or spatial resolution of a modulator may be critical.
Project description:Bright, iridescent colors observed in nature are often caused by light interference within nanoscale periodic lattices, inspiring numerous strategies for coloration devoid of inorganic pigments. Here, we describe and characterize the septum of the Lunaria annua plant that generates large (multicentimeter), freestanding iridescent sheets, with distinctive silvery-white reflective appearance. This originates from the thin-film assembly of cellulose fibers in the cells of the septum that induce thin-film interference-like colors at the microscale, thus accounting for the structure's overall silvery-white reflectance at the macroscale. These cells further assemble into two thin layers, resulting in a mechanically robust, iridescent septum, which is also significantly light due to its high air porosity (>70%) arising from the cells' hollow-core structure. This combination of hierarchical structure comprising mechanical and optical function can inspire technological classes of devices and interfaces based on robust, light, and spectrally responsive natural substrates.
Project description:The 193-nm photolysis of CH2CHCN illustrates the capability of chirped-pulse Fourier transform millimeter-wave spectroscopy to characterize transition states. We investigate the HCN, HNC photofragments in highly excited vibrational states using both frequency and intensity information. Measured relative intensities of J = 1-0 rotational transition lines yield vibrational-level population distributions (VPD). These VPDs encode the properties of the parent molecule transition state at which the fragment molecule was born. A Poisson distribution formalism, based on the generalized Franck-Condon principle, is proposed as a framework for extracting information about the transition-state structure from the observed VPD. We employ the isotopologue CH2CDCN to disentangle the unimolecular 3-center DCN elimination mechanism from other pathways to HCN. Our experimental results reveal a previously unknown transition state that we tentatively associate with the HCN eliminated via a secondary, bimolecular reaction.
Project description:This comprehensive review critically examines the current state of research on the biological effects of millimeter-wave (MMW) therapy and its potential implications for disease treatment. By investigating both the thermal and non-thermal impacts of MMWs, we elucidate cellular-level alterations, including changes in ion channels and signaling pathways. Our analysis encompasses MMW's therapeutic prospects in oncology, such as inducing apoptosis, managing pain, and modulating immunity through cytokine regulation and immune cell activation. By employing a rigorous methodology involving an extensive database search and stringent inclusion criteria, we emphasize the need for standardized protocols to enhance the reliability of future research. Although MMWs exhibit promising therapeutic potential, our findings highlight the urgent need for further elucidation of non-thermal mechanisms and rigorous safety assessments, considering the intricate nature of MMW interactions and inconsistent study outcomes. This review underscores the importance of focused research on the biological mechanisms of MMWs and the identification of optimal frequencies to fully harness their therapeutic capabilities. However, we acknowledge the challenges of variable study quality and the necessity for advanced quality control measures to ensure the reproducibility and comparability of future investigations. In conclusion, while MMW therapy holds promise as a novel therapeutic modality, further research is imperative to unravel its complex biological effects, establish safety profiles, and optimize treatment protocols before widespread clinical application.