Project description:Existing electronic skin (e-skin) sensing platforms are equipped to monitor physical parameters using power from batteries or near-field communication. For e-skins to be applied in the next generation of robotics and medical devices, they must operate wirelessly and be self-powered. However, despite recent efforts to harvest energy from the human body, self-powered e-skin with the ability to perform biosensing with Bluetooth communication are limited because of lack of a continuous energy source and limited power efficiency. Here, we report a flexible and fully perspiration-powered integrated electronic skin (PPES) for multiplexed metabolic sensing in situ. The battery-free e-skin contains multimodal sensors and highly efficient lactate biofuel cells that use a unique integration of zero- to three-dimensional nanomaterials to achieve high power intensity and long-term stability. The PPES delivered a record-breaking power density of 3.5 milliwatt-centimeter-2 for biofuel cells in untreated human body fluids (human sweat) and displayed a very stable performance during a 60-hour continuous operation. It selectively monitored key metabolic analytes (e.g., urea, NH4 +, glucose, and pH) and the skin temperature during prolonged physical activities and wirelessly transmitted the data to the user interface using Bluetooth. The PPES was also able to monitor muscle contraction and work as a human-machine interface for human- prosthesis walking.
Project description:The development of advanced technologies for wireless data collection and the analysis of quantitative data, with application to a human-machine interface (HMI), is of growing interest. In particular, various wearable devices related to HMIs are being developed. These devices require a customization process that considers the physical characteristics of each individual, such as mounting positions of electrodes, muscle masses, and so forth. Here, the authors report device and calculation concepts for flexible platforms that can measure electrical signals changed through electromyography (EMG). This soft, flexible, and lightweight EMG sensor can be attached to curved surfaces such as the forearm, biceps, back, legs, etc., and optimized biosignals can be obtained continuously through post-processing. In addition to the measurement of EMG signals, the application of the HMI has stable performance and high accuracy of more than 95%, as confirmed by 50 trials per case. The result of this study shows the possibility of application to various fields such as entertainment, the military, robotics, and healthcare in the future.
Project description:Tactile sensations are mainly transmitted to each other by physical touch. Wireless touch perception could be a revolution for us to interact with the world. Here, we report a wireless self-sensing and haptic-reproducing electronic skin (e-skin) to realize noncontact touch communications. A flexible self-sensing actuator was developed to provide an integrated function in both tactile sensing and haptic feedback. When this e-skin was dynamically pressed, the actuator generated an induced voltage as tactile information. Via wireless communication, another e-skin could receive this tactile data and run a synchronized haptic reproduction. Thus, touch could be wirelessly conveyed in bidirections between two users as a touch intercom. Furthermore, this e-skin could be connected with various smart devices to form a touch internet of things where one-to-one and one-to-multiple touch delivery could be realized. This wireless touch presents huge potentials in remote touch video, medical care/assistance, education, and many other applications.
Project description:Motor imagery offers an excellent opportunity as a stimulus-free paradigm for brain-machine interfaces. Conventional electroencephalography (EEG) for motor imagery requires a hair cap with multiple wired electrodes and messy gels, causing motion artifacts. Here, a wireless scalp electronic system with virtual reality for real-time, continuous classification of motor imagery brain signals is introduced. This low-profile, portable system integrates imperceptible microneedle electrodes and soft wireless circuits. Virtual reality addresses subject variance in detectable EEG response to motor imagery by providing clear, consistent visuals and instant biofeedback. The wearable soft system offers advantageous contact surface area and reduced electrode impedance density, resulting in significantly enhanced EEG signals and classification accuracy. The combination with convolutional neural network-machine learning provides a real-time, continuous motor imagery-based brain-machine interface. With four human subjects, the scalp electronic system offers a high classification accuracy (93.22 ± 1.33% for four classes), allowing wireless, real-time control of a virtual reality game.
Project description:BackgroundSubdural electrocorticography (ECoG) signals have been proposed as a stable, good-quality source for brain-machine interfaces (BMIs), with a higher spatial and temporal resolution than electroencephalography (EEG). However, long-term implantation may lead to chronic inflammatory reactions and connective tissue encapsulation, resulting in a decline in signal recording quality. However, no study has reported the effects of the surrounding tissue on signal recording and device functionality thus far.MethodsIn this study, we implanted a wireless recording device with a customized 32-electrode-ECoG array subdurally in two nonhuman primates for 15 months. We evaluated the neural activities recorded from and wirelessly transmitted to the devices and the chronic tissue reactions around the electrodes. In addition, we measured the gain factor of the newly formed ventral fibrous tissue in vivo.ResultsTime-frequency analyses of the acute and chronic phases showed similar signal features. The average root mean square voltage and power spectral density showed relatively stable signal quality after chronic implantation. Histological examination revealed thickening of the reactive tissue around the electrode array; however, no evident inflammation in the cortex. From gain factor analysis, we found that tissue proliferation under electrodes reduced the amplitude power of signals.ConclusionThis study suggests that subdural ECoG may provide chronic signal recordings for future clinical applications and neuroscience research. This study also highlights the need to reduce proliferation of reactive tissue ventral to the electrodes to enhance long-term stability.
Project description:Untethered miniature robots have significant poten-tial and promise in diverse minimally invasive medical applications inside the human body. For drug delivery and physical contra-ception applications inside tubular structures, it is desirable to have a miniature anchoring robot with self-locking mechanism at a target tubular region. Moreover, the behavior of this robot should be tracked and feedback-controlled by a medical imaging-based system. While such a system is unavailable, we report a reversible untethered anchoring robot design based on remote magnetic actuation. The current robot prototype's dimension is 7.5 mm in diameter, 17.8 mm in length, and made of soft polyurethane elastomer, photopolymer, and two tiny permanent magnets. Its relaxation and anchoring states can be maintained in a stable manner without supplying any control and actuation input. To control the robot's locomotion, we implement a two-dimensional (2D) ultrasound imaging-based tracking and control system, which automatically sweeps locally and updates the robot's position. With such a system, we demonstrate that the robot can be controlled to follow a pre-defined 1D path with the maximal position error of 0.53 ± 0.05 mm inside a tubular phantom, where the reversible anchoring could be achieved under the monitoring of ultrasound imaging.
Project description:Arrays of floating neural sensors with high channel count that cover an area of square centimeters and larger would be transformative for neural engineering and brain-machine interfaces. Meeting the power and wireless data communications requirements within the size constraints for each neural sensor has been elusive due to the need to incorporate sensing, computing, communications, and power functionality in a package of approximately 100 micrometers on a side. In this work, we demonstrate a near infrared optical power and data communication link for a neural recording system that satisfies size requirements to achieve dense arrays and power requirements to prevent tissue heating. The optical link is demonstrated using an integrated optoelectronic device consisting of a tandem photovoltaic cell and microscale light emitting diode. End-to-end functionality of a wireless neural link within system constraints is demonstrated using a pre-recorded neural signal between a self-powered CMOS integrated circuit and single photon avalanche photodiode.
Project description:We report the application of a nonvolatile ionic gel as a soft, conductive interface for electrotactile stimulation. Materials characterization reveals that, compared to a conventional ionic hydrogel, a glycerol-containing ionic gel does not dry out in air, has better adhesion to skin, and exhibits a similar impedance spectrum in the range of physiological frequencies. Moreover, psychophysical experiments reveal that the nonvolatile gel also exhibits a wider window of comfortable electrotactile stimulation. Finally, a simple pixelated device is fabricated to demonstrate spatial resolution of the haptic signal.
Project description:Complicated structures consisting of multi-layers with a multi-modal array of device components, i.e., so-called patterned multi-layers, and their corresponding circuit designs for signal readout and addressing are used to achieve a macroscale electronic skin (e-skin). In contrast to this common approach, we realized an extremely simple macroscale e-skin only by employing a single-layered piezoresistive MWCNT-PDMS composite film with neither nano-, micro-, nor macro-patterns. It is the deep machine learning that made it possible to let such a simple bulky material play the role of a smart sensory device. A deep neural network (DNN) enabled us to process electrical resistance change induced by applied pressure and thereby to instantaneously evaluate the pressure level and the exact position under pressure. The great potential of this revolutionary concept for the attainment of pressure-distribution sensing on a macroscale area could expand its use to not only e-skin applications but to other high-end applications such as touch panels, portable flexible keyboard, sign language interpreting globes, safety diagnosis of social infrastructures, and the diagnosis of motility and peristalsis disorders in the gastrointestinal tract.
Project description:Electronic skins (e-skins) aim to replicate the capabilities of human skin by integrating electronic components and advanced materials into a flexible, thin, and stretchable substrate. Electrical impedance tomography (EIT) has recently been adopted in the area of e-skin thanks to its robustness and simplicity of fabrication compared to previous methods. However, the most common EIT configurations have limitations in terms of low sensitivities in areas far from the electrodes. Here we combine two piezoresistive materials with different conductivities and charge carriers, creating anisotropy in the sensitive part of the e-skin. The bottom layer consists of an ionically conducting hydrogel, while the top layer is a self-healing composite that conducts electrons through a percolating carbon black network. By changing the pattern of the top layer, the resulting distribution of currents in the e-skin can be tuned to locally adapt the sensitivity. This approach can be used to biomimetically adjust the sensitivities of different regions of the skin. It was demonstrated how the sensitivity increased by 500% and the localization error reduced by 40% compared to the homogeneous case, eliminating the lower sensitivity regions. This principle enables integrating the various sensing capabilities of our skins into complex 3D geometries. In addition, both layers of the developed e-skin have self-healing capabilities, showing no statistically significant difference in localization performance before the damage and after healing. The self-healing bilayer e-skin could recover full sensing capabilities after healing of severe damage.