Ontology highlight
ABSTRACT: Background
This study aimed to increase the knowledge on how to enhance the performance of artificial intelligence (AI)-enabled electrocardiography (ECG) to detect atrial fibrillation (AF) on sinus rhythm ECG (SR-ECG).Methods
It is a retrospective analysis of a single-center, prospective cohort study (Shinken Database). We developed AI-enabled ECG using SR-ECG to predict AF with a convolutional neural network (CNN). Among new patients in our hospital (n = 19,170), 276 AF label (having ECG on AF [AF-ECG] in the ECG database) and 1896 SR label with following three conditions were identified in the derivation dataset: (1) without structural heart disease, (2) in AF label, SR-ECG was taken within 31 days from AF-ECG, and (3) in SR label, follow-up ≥ 1,095 days. Three patterns of AF label were analyzed by timing of SR-ECG to AF-ECG (before/after/before-or-after, CNN algorithm 1 to 3). The outcome measurement was area under the curve (AUC), sensitivity, specificity, accuracy, and F1 score. As an extra-testing dataset, the performance of AI-enabled ECG was tested in patients with structural heart disease.Results
The AUC of AI-enabled ECG with CNN algorithm 1, 2, and 3 in the derivation dataset was 0.83, 0.88, and 0.86, respectively; when tested in patients with structural heart disease, 0.75, 0.81, and 0.78, respectively.Conclusion
We confirmed high performance of AI-enabled ECG to detect AF on SR-ECG in patients without structural heart disease. The performance enhanced especially when SR-ECG after index AF-ECG was included in the algorithm, which was consistent in patients with structural heart disease.
SUBMITTER: Suzuki S
PROVIDER: S-EPMC8760502 | biostudies-literature |
REPOSITORIES: biostudies-literature