Early life stress induces hyperactivity but not increased anxiety-like behavior or ethanol drinking in outbred heterogeneous stock rats.
Ontology highlight
ABSTRACT: Early life stress is known to impact vulnerability to psychopathological disorders in adulthood, including anxiety and alcohol use disorder (AUD), but the mechanisms underlying susceptibility to these outcomes are not fully understood. In the current study, we used adolescent social isolation (ASI) to determine whether Heterogeneous Stock (HS) rats, an outbred model used for genetic fine-mapping, could be used to study the genetics contributing to ASI-induced anxiety- and AUD-like behavior. We isolated (ASI) or group-housed (adolescent group-housed; AGH) 64 male HS rats at 4 weeks of age. After 5 weeks in these housing conditions, multiple anxiety and coping/despair-like behaviors were measured. All rats were then individually housed and assessed for voluntary ethanol self-administration. At euthanasia, synaptoneurosomes were isolated from a subset of brains to examine the expression of two proteins associated with alcohol drinking-related behaviors, GluA1 and SK2, in the dorsal (dHC) and ventral hippocampus (vHC). We found that ASI increased hyperactivity in the open field test relative to AGH, with no changes in other anxiety-like behaviors. Surprisingly, ASI rats demonstrated decreased immobility and increased climbing in the forced swim test relative to AGH. In contrast to prior studies by us and others, we found no difference in self-administration of 20% ethanol, with decreased ethanol self-administration in ASI relative to AGH rats at higher ethanol concentrations. Furthermore, while ASI in Long-Evans rats resulted in decreased SK2 expression in vHC synaptosomes, no differences were seen in vHC synaptosomes for SK2 or GluA1 in HS rats. These results demonstrate that HS rats are protected against many of the negative effects previously seen in response to ASI, namely anxiety-like behavior and increased ethanol self-administration. The current work suggests that a lack of change in SK2 and GluA1 expression levels in the vHC may play a role in conferring this protection.
SUBMITTER: Deal A
PROVIDER: S-EPMC8767639 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA