ABSTRACT: The coronavirus disease 2019 (COVID-19) has rapidly become a significant public health emergency all over the world since it was first identified in Wuhan, China, in December 2019. Until today, massive disease-related data have been collected, both manually and through the Internet of Medical Things (IoMT), which can be potentially used to analyze the spread of the disease. On the other hand, with the help of IoMT, the analysis results of the current status of COVID-19 can be delivered to people in real time to enable situational awareness, which may help mitigate the disease spread in communities. However, current accessible data on COVID-19 are mostly at a macrolevel, such as for each state, county, or metropolitan area. For fine-grained areas, such as for each city, community, or geographical coordinate, COVID-19 data are usually not available, which prevents us from obtaining information on the disease spread in closer neighborhoods around us. To address this problem, in this article, we propose a two-level risk assessment system. In particular, we define a "risk index." Then, we develop a risk assessment model, called MK-DNN, by taking advantage of the multikernel density estimation (MKDE) and deep neural network (DNN). We train MK-DNN at the macrolevel (for each metro area), which subsequently enables us to obtain the risk indices at the microlevel (for each geographic coordinate). Moreover, a heuristic validation method is further designed to help validate the obtained microlevel risk indices. Simulations conducted on real-world data demonstrate the accuracy and validity of our proposed risk assessment system.