A tale of solving two computational challenges in protein science: neoantigen prediction and protein structure prediction.
Ontology highlight
ABSTRACT: In this article, we review two challenging computational questions in protein science: neoantigen prediction and protein structure prediction. Both topics have seen significant leaps forward by deep learning within the past five years, which immediately unlocked new developments of drugs and immunotherapies. We show that deep learning models offer unique advantages, such as representation learning and multi-layer architecture, which make them an ideal choice to leverage a huge amount of protein sequence and structure data to address those two problems. We also discuss the impact and future possibilities enabled by those two applications, especially how the data-driven approach by deep learning shall accelerate the progress towards personalized biomedicine.
SUBMITTER: Tran NH
PROVIDER: S-EPMC8769896 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA