Project description:Since early 2021, SARS-CoV-2 variants of concern (VOCs) have been causing epidemic rebounds in many countries. Their properties are well characterized at the epidemiological level but the potential underlying within-host determinants remain poorly understood. We analyze a longitudinal cohort of 6944 individuals with 14 304 cycle threshold (Ct) values of reverse-transcription quantitative polymerase chain reaction (RT-qPCR) VOC screening tests performed in the general population and hospitals in France between February 6 and August 21, 2021. To convert Ct values into numbers of virus copies, we performed an additional analysis using droplet digital PCR (ddPCR). We find that the number of viral genome copies reaches a higher peak value and has a slower decay rate in infections caused by Alpha variant compared to that caused by historical lineages. Following the evidence that viral genome copies in upper respiratory tract swabs are informative on contagiousness, we show that the kinetics of the Alpha variant translate into significantly higher transmission potentials, especially in older populations. Finally, comparing infections caused by the Alpha and Delta variants, we find no significant difference in the peak viral copy number. These results highlight that some of the differences between variants may be detected in virus load variations.
Project description:BackgroundThe Omicron SARS-CoV-2 variant has spread internationally and is responsible for rapidly increasing case numbers. The emergence of divergent variants in the context of a heterogeneous and evolving neutralizing antibody response in host populations might compromise protection afforded by vaccines or prior infection.MethodsWe measured neutralizing antibody titers in 169 longitudinally collected plasma samples using pseudotypes bearing the Wuhan-hu-1 or the Omicron variant or a laboratory-designed neutralization-resistant SARS-CoV-2 spike (PMS20). Plasmas were obtained from convalescents who did or did not subsequently receive an mRNA vaccine, or naive individuals who received 3-doses of mRNA or 1-dose Ad26 vaccines. Samples were collected approximately 1, 5-6 and 12 months after initial vaccination or infection.ResultsLike PMS20, the Omicron spike protein was substantially resistant to neutralization compared to Wuhan-hu-1. In convalescent plasma the median deficit in neutralizing activity against PMS20 or Omicron was 30- to 60-fold. Plasmas from recipients of 2 mRNA vaccine doses were 30- to 180- fold less potent against PMS20 and Omicron than Wuhan-hu-1. Notably, previously infected or two-mRNA dose vaccinated individuals who received additional mRNA vaccine dose(s) had 38 to 154-fold and 35 to 214-fold increases in neutralizing activity against Omicron and PMS20 respectively.ConclusionsOmicron exhibits similar distribution of sequence changes and neutralization resistance as does a laboratory-designed neutralization-resistant spike protein, suggesting natural evolutionary pressure to evade the human antibody response. Currently available mRNA vaccine boosters, that may promote antibody affinity maturation, significantly ameliorate SARS-CoV-2 neutralizing antibody titers.
Project description:ObjectivesThe severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an emerging virus causing substantial morbidity and mortality worldwide. We performed a cross-sectional investigation of SARS-CoV-2 clusters in Suzhou to determine the transmissibility of the virus among close contacts and to assess the demographic and clinical characteristics between index and secondary cases.MethodsWe review the clustered patients with SARS-CoV-2 infections in Suzhou between 22 January and 29 February 2020. The demographic and clinical characteristics were compared between index and secondary cases. We calculated the basic reproduction number (R 0) among close contacts with SLI model.ResultsBy 22 February, 87 patients with SARS-CoV-2 infection were reported, including 50 sporadic and 37 clustered cases, who were generated from 13 clusters. On admission, 5 (20.8%) out of 24 secondary cases were asymptomatic. The male ratio of index cases was significantly higher than that of secondary cases. Additionally, the index cases were more likely to have fever and increased CRP levels than the secondary cases. The R 0 values of clusters displayed a significantly declining trend over time for all clusters. The relative risk of infection in blood-related contacts of cases versus unrelated contacts was 1.60 for SARS-CoV-2 (95% CI: 0.42-2.95).ConclusionsIn conclusion, SARS-CoV-2 has great person-to-person transmission capability among close contacts. The secondary cases are more prone to have mild symptoms than index cases. There is no increased RR of secondary infection in blood relatives versus unrelated contacts. The high rate of asymptomatic SARS-CoV-2 infections highlights the urgent need to enhance active case finding strategy for early detection of infectious patients.
Project description:We compared secondary attack rates in households with B.1.1.7 variant of concern (VOC) versus non-VOC index cases in a matched cohort in Ontario, Canada. The secondary attack rate for VOC index cases was 1.31 times higher than non-VOC index cases. This increase was particularly accentuated for asymptomatic or presymptomatic index cases.
Project description:Effective vaccines protect individuals by not only reducing the susceptibility to infection, but also reducing the infectiousness of breakthrough infections in vaccinated cases. To disentangle the vaccine effectiveness against susceptibility to infection (VES) and vaccine effectiveness against infectiousness (VEI), we took advantage of Danish national data comprising 24,693 households with a primary case of SARS-CoV-2 infection (Delta Variant of Concern, 2021) including 53,584 household contacts. In this setting, we estimated VES as 61% (95%-CI: 59-63), when the primary case was unvaccinated, and VEI as 31% (95%-CI: 26-36), when the household contact was unvaccinated. Furthermore, unvaccinated secondary cases with an infection exhibited a three-fold higher viral load compared to fully vaccinated secondary cases with a breakthrough infection. Our results demonstrate that vaccinations reduce susceptibility to infection as well as infectiousness, which should be considered by policy makers when seeking to understand the public health impact of vaccination against transmission of SARS-CoV-2.
Project description:The B.1.617.2 (Delta) variant of concern is causing a new wave of infections in many countries. In order to better understand the changes of the SARS-CoV-2 mutation at the genetic level, we selected six mutations in the S region of the Delta variant compared with the native SARS-CoV-2 and get the conductance information of these six short RNA oligonucleotides groups by construct RNA: DNA hybrids. The electronic characteristics are investigated by the combination of density functional theory and non-equilibrium Green's function formulation with decoherence. We found that conductance is very sensitive to small changes in virus sequence. Among the 6 mutations in the Delta S region, D950N shows the largest change in relative conductance, reaching a surprising 4104.75%. These results provide new insights into the Delta variant from the perspective of its electrical properties. This may be a new method to distinguish virus variation and possess great research prospects.