Unknown

Dataset Information

0

Origin, loss, and regain of self-incompatibility in angiosperms.


ABSTRACT: The self-incompatibility (SI) system with the broadest taxonomic distribution in angiosperms is based on multiple S-locus F-box genes (SLFs) tightly linked to an S-RNase termed type-1. Multiple SLFs collaborate to detoxify nonself S-RNases while being unable to detoxify self S-RNases. However, it is unclear how such a system evolved, because in an ancestral system with a single SLF, many nonself S-RNases would not be detoxified, giving low cross-fertilization rates. In addition, how the system has been maintained in the face of whole-genome duplications (WGDs) or lost in other lineages remains unclear. Here we show that SLFs from a broad range of species can detoxify S-RNases from Petunia with a high detoxification probability, suggestive of an ancestral feature enabling cross-fertilization and subsequently modified as additional SLFs evolved. We further show, based on its genomic signatures, that type-1 was likely maintained in many lineages, despite WGD, through deletion of duplicate S-loci. In other lineages, SI was lost either through S-locus deletions or by retaining duplications. Two deletion lineages regained SI through type-2 (Brassicaceae) or type-4 (Primulaceae), and one duplication lineage through type-3 (Papaveraceae) mechanisms. Thus, our results reveal a highly dynamic process behind the origin, maintenance, loss, and regain of SI.

SUBMITTER: Zhao H 

PROVIDER: S-EPMC8774079 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC9250077 | biostudies-literature
| S-EPMC4766925 | biostudies-other
| S-EPMC3405996 | biostudies-literature
| S-EPMC5218368 | biostudies-literature
| S-EPMC6861630 | biostudies-literature
| S-EPMC60842 | biostudies-literature
| S-EPMC7530648 | biostudies-literature
| S-EPMC2659713 | biostudies-literature
| S-EPMC28378 | biostudies-literature
| S-EPMC6580173 | biostudies-literature