Unknown

Dataset Information

0

Deep Learning Supplants Visual Analysis by Experienced Operators for the Diagnosis of Cardiac Amyloidosis by Cine-CMR.


ABSTRACT:

Background

Diagnosing cardiac amyloidosis (CA) from cine-CMR (cardiac magnetic resonance) alone is not reliable. In this study, we tested if a convolutional neural network (CNN) could outperform the visual diagnosis of experienced operators.

Method

119 patients with cardiac amyloidosis and 122 patients with left ventricular hypertrophy (LVH) of other origins were retrospectively selected. Diastolic and systolic cine-CMR images were preprocessed and labeled. A dual-input visual geometry group (VGG ) model was used for binary image classification. All images belonging to the same patient were distributed in the same set. Accuracy and area under the curve (AUC) were calculated per frame and per patient from a 40% held-out test set. Results were compared to a visual analysis assessed by three experienced operators.

Results

frame-based comparisons between humans and a CNN provided an accuracy of 0.605 vs. 0.746 (p < 0.0008) and an AUC of 0.630 vs. 0.824 (p < 0.0001). Patient-based comparisons provided an accuracy of 0.660 vs. 0.825 (p < 0.008) and an AUC of 0.727 vs. 0.895 (p < 0.002).

Conclusion

based on cine-CMR images alone, a CNN is able to discriminate cardiac amyloidosis from LVH of other origins better than experienced human operators (15 to 20 points more in absolute value for accuracy and AUC), demonstrating a unique capability to identify what the eyes cannot see through classical radiological analysis.

SUBMITTER: Germain P 

PROVIDER: S-EPMC8774777 | biostudies-literature |

REPOSITORIES: biostudies-literature

Similar Datasets

| S-EPMC8551568 | biostudies-literature
| S-EPMC6850003 | biostudies-literature
| S-EPMC7722220 | biostudies-literature
| S-EPMC7720569 | biostudies-literature
| S-EPMC10894983 | biostudies-literature
| S-EPMC9643770 | biostudies-literature
| S-EPMC10159959 | biostudies-literature
| S-EPMC10160163 | biostudies-literature
| S-EPMC6823341 | biostudies-literature
| S-EPMC7426830 | biostudies-literature