An Efficient Root Transformation System for Recalcitrant Vicia sativa.
Ontology highlight
ABSTRACT: Common vetch (Vicia sativa) is a multi-purpose legume widely used in pasture and crop rotation systems. Vetch seeds have desirable nutritional characteristics and are often used to feed ruminant animals. Although transcriptomes are available for vetch, problems with genetic transformation and plant regeneration hinder functional gene studies in this legume species. Therefore, the aim of this study was to develop a simple, efficient and rapid hairy root transformation system for common vetch to facilitate functional gene analysis. At first, we infected the hypocotyls of 5-day-old in vitro or in vivo, soil-grown seedlings with Rhizobium rhizogenes K599 using a stabbing method and produced transgenic hairy roots after 24 days at 19 and 50% efficiency, respectively. We later improved the hairy root transformation in vitro by infecting different explants (seedling, hypocotyl-epicotyl, and shoot) with R. rhizogenes. We observed hairy root formation at the highest efficiency in shoot and hypocotyl-epicotyl explants with 100 and 93% efficiency, respectively. In both cases, an average of four hairy roots per explant were obtained, and about 73 and 91% of hairy roots from shoot and hypocotyl-epicotyl, respectively, showed stable expression of a co-transformed marker β-glucuronidase (GUS). In summary, we developed a rapid, highly efficient, hairy root transformation method by using R. rhizogenes on vetch explants, which could facilitate functional gene analysis in common vetch.
Project description:The temperate and herbaceous genus Vicia L. is a member of the legume tribe Fabeae of the subfamily Papilionoideae. The genus Vicia comprises 166 annual or perennial species distributed mainly in Europe, Asia, and North America, but also extending to the temperate regions of South America and tropical Africa. The use of simple sequence repeat (SSR) markers for Vicia species has not been investigated as extensively as for other crop species. In this study, we assessed the potential for cross-species amplification of cDNA microsatellite markers developed from common vetch (Vicia sativa subsp. sativa). For cross-species amplification of the SSRs, amplification was carried out with genomic DNA isolated from two to eight accessions of 22 different Vicia species. For individual species or subspecies, the transferability rates ranged from 33% for V. ervilia to 82% for V. sativa subsp. nigra with an average rate of 52.0%. Because the rate of successful SSR marker amplification generally correlates with genetic distance, these SSR markers are potentially useful for analyzing genetic relationships between or within Vicia species.
Project description:Willow (Salix spp. L.) species are fast-growing trees and shrubs that have attracted emergent attention for their potential as feedstocks for bioenergy and biofuel production, as well as for pharmaceutical and phytoremediation applications. This economic and environmental potential has propelled the creation of several genetic and genomic resources for Salix spp. Furthermore, the recent availability of an annotated genome for Salix purpurea has pinpointed novel candidate genes underlying economically relevant traits. However, functional studies have been stalled by the lack of rapid and efficient coupled regeneration-transformation systems for Salix purpurea and Salix spp. in general. In this report, we describe a fast and highly efficient hairy root transformation protocol for S. purpurea. It was effective for different explant sources and S. purpurea genotypes, with efficiencies between 63.4% and 98.7%, and the screening of the transformed hairy roots was easily carried out using the fluorescent marker DsRed. To test the applicability of this hairy root transformation system for gene functional analysis, we transformed hairy roots with the vector pGWAY-SpDRM2, where the gene SpDRM2 encoding a putative Domain Rearranged Methyltransferase (DRM) was placed under the control of the CaMV 35S constitutive promoter. Indeed, the transgenic hairy roots obtained exhibited significantly increased expression of SpDRM2 as compared to controls, demonstrating that this protocol is suitable for the medium/high-throughput functional characterization of candidate genes in S. purpurea and other recalcitrant Salix spp.
Project description:Due to the protracted transgenic timeline and low efficiency in stable genetic transformation of woody plants, there has been limited exploration of real-time organelle imaging within stable transgenic woody plant cells. Here, we established an efficient in vivo genetic transformation system for woody plants using an Agrobacterium rhizogenes-mediated approach. This system was successfully validated in multiple perennial woody species. Using citrus as a model, we introduced organelle-targeted fluorescent reporters via genetic transformation and investigated their subcellular localization and dynamics using advanced imaging techniques, such as confocal microscopy and live-cell imaging. Moreover, we subjected transgenic MT-GFP-labeled mitochondria in root cells to stress conditions simulating agricultural adversities faced by fruit crops. The stress-induced experiments revealed notable alterations in mitochondrial morphology. Our study contributes novel insights into membrane trafficking processes, protein localization dynamics, and cellular physiology in woody plants, while also providing stable and efficient genetic transformation methods for perennial woody species.
Project description:A protocol for the induction of site-directed deletions and insertions in the genome of Brassica carinata with CRISPR is described. The construct containing the Cas9 nuclease and the guide RNA (gRNA) was delivered by the hairy root transformation technique, and a successful transformation was monitored by GFP fluorescence. PAGE analysis of an amplified region, presumably containing the deletions and insertions, demonstrated up to seven different indels in one transgenic root and in all analyzed roots a wildtype allele of the modified gene was not detectable. Interestingly, many of these mutations consisted of relatively large indels with up to 112 bp. The exact size of the deletions was determined to allow an estimation whether the targeted gene was not functional due to a considerable deletion or a frame shift within the open reading frame. This allowed a direct phenotypic assessment of the previously characterized roots and, in fact, deletions in FASCICLIN-LIKE ARABINOGALACTAN PROTEIN 1 (BcFLA1)-a gene with an expression pattern consistent with a role in root hair architecture-resulted in shorter root hairs compared to control roots ectopically expressing an allele of the gene that cannot be targeted by the gRNA in parallel to the CRISPR construct. As an additional line of evidence, we monitored BcFLA1 expression with qPCR and detected a significant reduction of the transcript in roots with an active CRISPR construct compared to the control, although residual amounts of the transcript were detected, possibly due to inefficient nonsense-mediated mRNA decay. Additionally, the presence of deletions and insertions were verified by Sanger sequencing of the respective amplicons. In summary we demonstrate the successful application of CRISPR/Cas9 in hairy roots of B. carinata, the proof of its effectiveness and its effect on the root hair phenotype. This study paves the way for experimental strategies involving the phenotypic assessment of gene lesions by CRISPR which do not require germline transmission.
Project description:BackgroundLitchi chinensis Sonn. is an economically important fruit tree in tropical and subtropical regions. However, litchi functional genomics is severely hindered due to its recalcitrance to regeneration and stable transformation. Agrobacterium rhizogenes-mediated hairy root transgenic system provide an alternative to study functional genomics in woody plants. However, the hairy root transgenic system has not been established in litchi.ResultsIn this study, we report a rapid and highly efficient A. rhizogenes-mediated co-transformation system in L. chinensis using Green Fluorescent Protein (GFP) gene as a marker. Both leaf discs and stem segments of L. chinensis cv. 'Fenhongguiwei' seedlings were able to induce transgenic hairy roots. The optimal procedure involved the use of stem segments as explants, infection by A. rhizogenes strain MSU440 at optical density (OD600) of 0.7 for 10 min and co-cultivation for 3 days, with a co-transformation efficiency of 9.33%. Furthermore, the hairy root transgenic system was successfully used to validate the function of the key anthocyanin regulatory gene LcMYB1 in litchi. Over-expression of LcMYB1 produced red hairy roots, which accumulated higher contents of anthocyanins, proanthocyanins, and flavonols. Additionally, the genes involving in the flavonoid pathway were strongly activated in the red hairy roots.ConclusionWe first established a rapid and efficient transformation system for the study of gene function in hairy roots of litchi using A. rhizogenes strain MSU440 by optimizing parameters. This hairy root transgenic system was effective for gene function analysis in litchi using the key anthocyanin regulator gene LcMYB1 as an example.
Project description:Highly efficient genetic transformation technology is greatly beneficial for crop gene function analysis and precision breeding. However, the most commonly used genetic transformation technology for woody plants, mediated by Agrobacterium tumefaciens, is time-consuming and inefficient, which limits its utility for gene function analysis. In this study, a simple, universal, and highly efficient genetic transformation technology mediated by A. rhizogenes K599 is described. This technology can be applied to multiple citrus genotypes, and only 2-8 weeks were required for the entire workflow. Genome-editing experiments were simultaneously conducted using 11 plasmids targeting different genomic positions and all corresponding transformants with the target knocked out were obtained, indicating that A. rhizogenes-mediated genome editing was highly efficient. In addition, the technology is advantageous for investigation of specific genes (such as ACD2) for obtaining "hard-to-get" transgenic root tissue. Furthermore, A. rhizogenes can be used for direct viral vector inoculation on citrus bypassing the requirement for virion enrichment in tobacco, which facilitates virus-induced gene silencing and virus-mediated gene expression. In summary, we established a highly efficient genetic transformation technology bypassing tissue culture in citrus that can be used for genome editing, gene overexpression, and virus-mediated gene function analysis. We anticipate that by reducing the cost, required workload, experimental period, and other technical obstacles, this genetic transformation technology will be a valuable tool for routine investigation of endogenous and exogenous genes in citrus.
Project description:Poplar is a model system for the regeneration and genetic transformation of woody plants. To shorten the time required for studies of transgenic poplar, efforts have been made to optimize transformation methods that use Agrobacterium tumefaciens. In this study, an Agrobacterium infective suspension was treated at 4 °C for at least 10 h before infecting explants. By transforming the Populus hybrid clone "Nanlin895" (Populus deltoides×P. euramericana) with Agrobacterium harboring the PBI121:CarNAC6 binary vector, we showed that the transformation efficiency was improved significantly by multiple independent factors, including an Agrobacterium infective suspension with an OD600 of 0.7, an Agrobacterium infection for 120 min, an Agrobacterium infective suspension at a pH of 5.0, an acetosyringone concentration of 200 µM, a cocultivation at 28 °C, a cocultivation for 72 h and a sucrose concentration of 30 g/L in the cocultivation medium. We also showed that preculture of wounded leaf explants for two days increased the regeneration rate. The integration of the desired gene into transgenic poplars was detected using selective medium containing kanamycin, followed by southern blot analysis. The expression of the transgene in the transgenic lines was confirmed by northern blot analysis.
Project description:The stable genetic transformation of soybean is time-consuming and inefficient. As a simple and practical alternative method, hairy root transformation mediated by Agrobacterium rhizogenes is widely applied in studying root-specific processes, nodulation, biochemical and molecular functions of genes of interest, gene editing efficiency of CRISPR/Cas9, and biological reactors and producers. Therefore, many laboratories have developed unique protocols to obtain hairy roots in composite plants composed of transgenic roots and wild-type shoots. However, these protocols still suffer from the shortcomings of low efficiency and time, space, and cost consumption. To address this issue, we developed a new protocol efficient regeneration and transformation of hairy roots (eR&T) in soybean, by integrating and optimizing the main current methods to achieve high efficiency in both hairy root regeneration and transformation within a shorter period and using less space. By this eR&T method, we obtained 100% regeneration of hairy roots for all explants, with an average 63.7% of transformation frequency, which promoted the simultaneous and comparative analysis of the function of several genes. The eR&T was experimentally verified Promoter:GUS reporters, protein subcellular localization, and CRISPR/Cas9 gene editing experiments. Employing this approach, we identified several novel potential regulators of nodulation, and nucleoporins of the Nup107-160 sub-complex, which showed development-dependent and tissue-dependent expression patterns, indicating their important roles in nodulation in soybean. Thus, the new eR&T method is an efficient and economical approach for investigating not only root and nodule biology, but also gene function.
Project description:BackgroundThe growth of alfalfa (Medicago sativa L.) is significantly hampered by drought and nutrient deficiencies. The identification of root architectural and anatomical characteristics holds paramount importance for the development of alfalfa genotypes with enhanced adaptation to adverse environmental conditions. In this study, we employed a visual rhizobox system to investigate the variability in root system architecture (including root depth, root length, root tips number, etc.), anatomical features (such as cortical traits, total stele area, number and area of vessel, etc.), as well as nitrogen and phosphorus uptake across 53 alfalfa genotypes during the seedling stage.ResultsOut of the 42 traits measured, 21 root traits, along with nitrogen (N) and phosphorus (P) uptake, displayed higher coefficients of variation (CVs ≥ 0.25) among the tested genotypes. Local root morphological and anatomical traits exhibited more significant variation than global root traits. Twenty-three traits with CVs ≥ 0.25 constituted to six principal components (eigenvalues > 1), collectively accounting for 88.0% of the overall genotypic variation. Traits such as total root length, number of root tips, maximal root depth, and others exhibited positive correlations with shoot dry mass and root dry mass. Additionally, total stele area and xylem vessel area showed positive correlations with N and P uptake.ConclusionsThese root traits, which have demonstrated associations with biomass and nutrient uptake, may be considered for the breeding of alfalfa genotypes that possess efficient resource absorption and increased adaptability to abiotic stress, following validation during the entire growth period in the field.