Project description:Primitive nucleated erythroid cells in the bloodstream have long been suggested to be more similar to nucleated red cells of fish, amphibians, and birds than the red cells of fetal and adult mammals. Rainbow trout Ficoll-purified red blood cells (RBCs) cultured in vitro undergo morphological changes, especially when exposed to stress, and enter a new cell stage that we have coined shape-shifted RBCs (shRBCs). We have characterized these shRBCs using transmission electron microscopy (TEM) micrographs, Wright⁻Giemsa staining, cell marker immunostaining, and transcriptomic and proteomic evaluation. shRBCs showed reduced density of the cytoplasm, hemoglobin loss, decondensed chromatin in the nucleus, and striking expression of the B lymphocyte molecular marker IgM. In addition, shRBCs shared some features of mammalian primitive pyrenocytes (extruded nucleus surrounded by a thin rim of cytoplasm and phosphatidylserine (PS) exposure on cell surface). These shRBCs were transiently observed in heat-stressed rainbow trout bloodstream for three days. Functional network analysis of combined transcriptomic and proteomic studies resulted in the identification of proteins involved in pathways related to the regulation of cell morphogenesis involved in differentiation, cellular response to stress, and immune system process. In addition, shRBCs increased interleukin 8 (IL8), interleukin 1 β (IL1β), interferon ɣ (IFNɣ), and natural killer enhancing factor (NKEF) protein production in response to viral hemorrhagic septicemia virus (VHSV). In conclusion, shRBCs may represent a novel cell stage that participates in roles related to immune response mediation, homeostasis, and the differentiation and development of blood cells.
Project description:Human red blood cells (RBC) are highly differentiated cells that have lost all organelles and most intracellular machineries during their maturation process. RBC are fundamental for the nearly all basic physiologic dynamics and they are key cells in the body's respiratory system by being responsible for the oxygen transport to all cells and tissues, and delivery of carbon dioxide to the lungs. With their flexible structure RBC are capable to deform in order to travel through all blood vessels including very small capillaries. Throughout their in average 120 days lifespan, human RBC travel in the bloodstream and come in contact with a broad range of different cell types. In fact, RBC are able to interact and communicate with endothelial cells (ECs), platelets, macrophages, and bacteria. Additionally, they are involved in the maintenance of thrombosis and hemostasis and play an important role in the immune response against pathogens. To clarify the mechanisms of interaction of RBC and these other cells both in health and disease as well as to highlight the role of important key players, we focused our interest on RBC membrane components such as ion channels, proteins, and phospholipids.
Project description:Current and emerging technologies for mutation identification are changing the landscape of genetics and accelerating the pace of discovery. Application of high throughput genomic analysis to epilepsy will advance our understanding of the genetic contribution to common forms of epilepsy and suggest novel therapeutic strategies for improved treatment.
Project description:Although a subset of recent studies have suggested that red blood cell (RBC) storage length is associated with adverse patient outcomes, others have shown no such relationship. Adults may be transfused with RBC units of different storage lengths, and existing studies do not take into consideration that fresh RBCs may alter responses to concurrently transfused stored RBCs. To test this possibility, we utilized a murine model and investigated transfusion outcomes of fresh, stored, or fresh-plus-stored RBCs.Fresh, 14-day-stored or fresh plus 14-day-stored leukoreduced RBCs from HOD-transgenic donors (with RBC-specific expression of hen egg lysozyme, ovalbumin, and human Duffy(b)) were transfused into naïve C57BL/6 recipients. Serum cytokines and anti-HOD alloimmunization were evaluated after transfusion.In six of six experiments (n = 90 mice total), a proinflammatory serum cytokine storm of interleukin-6, keratinocyte-derived chemokine/CXCL1, and monocyte chemoattractant protein-1 was observed in transfusion recipients of stored but not fresh RBCs, along with high degrees of anti-HOD alloimmunization. However, concurrent transfusion of fresh HOD RBCs along with stored HOD RBCs significantly decreased these adverse outcomes (p < 0.05).These results are consistent with fresh murine HOD RBCs losing protective properties during storage, and introduce a previously unrecognized variable in RBC storage studies. If translatable to humans, uniform "old blood" groups may be needed in future clinical studies to more accurately investigate the biologic effects of older RBC units.