Predicting functional circular RNA-based competitive endogenous RNA network in gastric carcinoma using novel bioinformatics analysis.
Ontology highlight
ABSTRACT: Gastric cancer (GC) remains one of the most prevalent types of malignancies worldwide, and also one of the most reported lethal tumor-related diseases. Circular RNAs (circRNAs) have been certified to be trapped in multiple aspects of GC pathogenesis. Yet, the mechanism of this regulation is mostly undefined. This research is designed to discover the vital circRNA-microRNA (miRNA)-messenger RNA (mRNA) regulatory network in GC. Expression profiles with diverse levels including circRNAs, miRNAs, and mRNAs were all determined using microarray public datasets from Gene Expression Ominous (GEO). The differential circRNAs expressions were recognized against the published robust rank aggregation algorithm. Besides, a circRNA-based competitive endogenous RNA (ceRNA) interaction network was visualized via Cytoscape software (version 3.8.0). Functional and pathway enrichment analysis associated with differentially expressed targeted mRNAs were conducted using Cytoscape and an online bioinformatics database. Furthermore, an interconnected protein-protein interaction association network which consisted of 51 mRNAs was predicted, and hub genes were screened using STRING and CytoHubba. Then, several hub genes were chosen to explore their expression associated with survival rate and clinical stage in GEPIA and Kaplan-Meier Plotter databases. Finally, a carefully designed circRNA-related ceRNA regulatory subnetwork including four circRNAs, six miRNAs, and eight key hub genes was structured using the online bioinformatics tool.
SUBMITTER: Zhu Z
PROVIDER: S-EPMC8777479 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA