Project description:Loss-of-function variants within the filaggrin gene (FLG) increase the risk of atopic dermatitis. FLG also demonstrates intragenic copy number variation (CNV), with alleles encoding 10, 11, or 12 filaggrin monomers; hence, CNV may affect the amount of filaggrin expressed in the epidermis. A total of 876 Irish pediatric atopic dermatitis cases were compared with 928 population controls to test the hypothesis that CNV within FLG affects the risk of atopic dermatitis independently of FLG-null mutations. Cases and controls were screened for CNV and common FLG-null mutations. In this population the 11-repeat allele was most prevalent (allele frequency 51.5%); the 10-repeat allele frequency was 33.9% and the 12-repeat allele frequency was 14.6%. Having excluded FLG mutation carriers, the control group had a significantly higher number of repeats than cases (?(2) P=0.043), and the odds ratio of disease was reduced by a factor of 0.88 (95% confidence interval 0.78-0.98, P=0.025) for each additional unit of copy number. Breakdown products of filaggrin were quantified in tape-stripped stratum corneum from 31 atopic dermatitis patients and urocanic acid showed a positive correlation with total copy number. CNV within FLG makes a significant, dose-dependent contribution to atopic dermatitis risk, and therefore treatments to increase filaggrin expression may have therapeutic utility.
Project description:BackgroundCopy number variants (CNVs) have been identified in several studies to be associated with complex diseases. It is important, therefore, to understand the distribution of CNVs within and among populations. This study is the first report of a CNV map in African Americans.ResultsEmploying a SNP platform with greater than 500,000 SNPs, a first-generation CNV map of the African American genome was generated using DNA from 385 healthy African American individuals, and compared to a sample of 435 healthy White individuals. A total of 1362 CNVs were identified within African Americans, which included two CNV regions that were significantly different in frequency between African Americans and Whites (17q21 and 15q11). In addition, a duplication was identified in 74% of DNAs derived from cell lines that was not present in any of the whole blood derived DNAs.ConclusionThe Affymetrix 500 K array provides reliable CNV mapping information. However, using cell lines as a source of DNA may introduce artifacts. The duplication identified in high frequency in Whites and low frequency in African Americans on chromosome 17q21 reflects haplotype specific frequency differences between ancestral groups. The generation of the CNV map will be a valuable tool for identifying disease associated CNVs in African Americans.
Project description:BackgroundAtopic dermatitis (AD) is a common skin disease characterized by recurrent episodes of itching. Genetic variation associated with the persistence of AD has not been described for African American subjects.ObjectiveWe sought to evaluate genetic variation of filaggrin-2 (FLG2) in African American subjects with AD.MethodsWe evaluated a multiyear prospective cohort study of African American children with AD with respect to FLG2 variation based on whole-exome sequencing, followed by a targeted analysis. We ultimately evaluated the association of rs12568784 and rs16833974 with respect to the persistence of AD symptoms over time.ResultsWhole-exome analysis was conducted on 60 subjects, revealing a premature stop codon in exon 3 at S2377X (rs12568784) and X2392S (rs150529054) and a large exon 3 deletion mutation, Q2053del224. On the basis of a priori criteria, we then studied rs12568784, rs16833974 (H1249R), and Q2053del224. We noted that patients with S2377X (odds ratio [OR], 0.44; 95% CI, 0.25-0.46) and H1249R (OR, 0.23; 05% CI, 0.12-0.46) were significantly less likely to be free of symptoms of AD, and Q2053del224 (OR, 0.54; 95% CI, 0.16-1.80) trended toward this outcome. S2377X and H1249R were in high linkage disequilibrium (D' = 0.95).ConclusionsIn an African American cohort with AD, FLG2 mutations were associated with more persistent AD. This is the first finding of genetic variation of a skin barrier protein in subjects of African ancestry with AD.
Project description:Atopic dermatitis (AD) is a chronic, relapsing eczematous inflammatory skin disease. Mutations in the filaggrin gene (FLG) are major predisposing factors for AD. Ethnic differences exist between Asian and European populations in the frequency and spectrum of FLG mutations. Moreover, a distinct set of FLG mutations has been reported in Asian populations. The aim of this study was to examine the spectrum of FLG mutations in Koreans with AD. We also investigated the association of FLG mutations and clinical features of AD and compared the Korean FLG landscape with that of other East Asian countries.Seventy Korean patients with AD were enrolled in this study. Fourteen FLG mutations previously detected in Korean, Japanese, and Chinese patients were screened by genotyping.Four FLG null mutations (3321delA, K4022X, S3296X, and S2889X) were identified in eleven patients (15.7%). The most commonly detected mutations in Korean patients with AD were 3321delA (n=6, 9.1%) and K4022X (n=3, 4.5%). FLG mutations were significantly associated with elevated IgE (?200 KIU/L and/or MAST-CLA >3+, p=0.005), palmar hyperlinearity (p<0.001), and a family history of allergic disease (p=0.021).This study expanded our understanding of the landscape of FLG mutations in Koreans and revealed an association between FLG mutations and AD phenotype.
Project description:Human skin has evolved rapidly, leaving evolutionary signatures in the genome. The filaggrin (FLG) gene is widely studied for its skin-barrier function in humans. The extensive genetic variation in this gene, especially common loss-of-function (LoF) mutations, has been established as primary risk factors for atopic dermatitis. To investigate the evolution of this gene, we analyzed 2,504 human genomes and genotyped the copy number variation of filaggrin repeats within FLG in 126 individuals from diverse ancestral backgrounds. We were unable to replicate a recent study claiming that LoF of FLG is adaptive in northern latitudes with lower ultraviolet light exposure. Instead, we present multiple lines of evidence suggesting that FLG genetic variation, including LoF variants, have little or no effect on fitness in modern humans. Haplotype-level scrutinization of the locus revealed signatures of a recent selective sweep in Asia, which increased the allele frequency of a haplotype group (Huxian haplogroup) in Asian populations. Functionally, we found that the Huxian haplogroup carries dozens of functional variants in FLG and hornerin (HRNR) genes, including those that are associated with atopic dermatitis susceptibility, HRNR expression levels and microbiome diversity on the skin. Our results suggest that the target of the adaptive sweep is HRNR gene function, and the functional FLG variants that involve susceptibility to atopic dermatitis, seem to hitchhike the selective sweep on HRNR. Our study presents a novel case of a locus that harbors clinically relevant common genetic variation with complex evolutionary trajectories.
Project description:Background & objectivesAtopic diseases, including atopic dermatitis (AD), allergy and asthma, are complex diseases resulting from the effect of multiple genetic and interacting environmental factors on their pathophysiology. The genetic basis is incompletely understood; however, recent studies have shown an association between loss-of-function variants of the filaggrin gene (FLG) and atopic dermatitis. The aim of this study was to determine whether FLG variants can serve as a predictor for atopic diseases in Korean individuals.MethodsA total of 648 subjects were genotyped for the FLG P478S (rs11584340, C/T base change) polymorphism (322 patients and 326 controls). Serum levels of free fatty acids (FFA) and IgE were later stratified to determine the effects of the FLG polymorphism on AD.ResultsA significant difference in genotype frequency was found between AD patients and controls in the FLG P478S polymorphism. The FLG P478S T allele carrier (TT+TC) was associated with AD risk (odds ratio = 1.877, 95% confidence interval 1.089 to 3.234). In addition, the P478S T allele was related to high levels of FFA in AD patients (471.79 ± 298.96 vs. 333.54 ± 175.82 μg eq/l, P <0.05).Interpretation & conclusionsThe results of the present study suggest that the FLG P478S polymorphism alone and combined with other factors influences FFA levels and increases the susceptibility to AD.
Project description:BackgroundFilaggrin, coded by FLG, is the main source of several major components of natural moisturizing factor (NMF) in the stratum corneum (SC), including pyrrolidone carboxylic acid (PCA) and urocanic acid (UCA). Loss-offunction mutations in FLG lead to reduced levels of filaggrin degradation products in the SC. It has recently been suggested that expression of filaggrin may additionally be influenced by the atopic inflammatory response. In this study, we investigated the levels of several breakdown products of filaggrin in the SC in healthy controls (CTRL) and patients with atopic dermatitis (AD) in relation to FLG null allele status. We examined the relationship between NMF (defined here as the sum of PCA and UCA) and AD severity.MethodsThe SC levels of filaggrin degradation products including PCA, UCA, histidine (HIS) and tyrosine were determined in 24 CTRL and 96 patients with moderate-to-severe AD. All subjects were screened for 11 FLG mutations relevant for the study population.ResultsThe levels of PCA, UCA and HIS correlated with FLG genotype. Furthermore, these levels were higher in the CTRL when compared to AD patients with no FLG mutations. Multiple regression analysis showed that NMF levels were independently associated with FLG genotype and severity of disease.ConclusionDecreased NMF is a global feature of moderate-to-severe AD; within AD, FLG genotype is the major determinant of NMF, with disease severity as a secondary modifier. NMF components are reliably determined by a noninvasive and relatively inexpensive tape stripping technique.
Project description:African Americans are a genetically diverse population with a high burden of many, common heritable diseases. However, our understanding of genetic variation in African Americans is substandard because of a lack of published population-based genetic studies. We report the distribution of copy-number variation (CNV) in African Americans collected as part of the Hypertension Genetic Epidemiology Network (HyperGEN) using the Affymetrix 6.0 array and the CNV calling algorithms Birdsuite and PennCNV. We present population estimates of CNV from 446 unrelated African-American subjects randomly selected from the 451 families collected within HyperGEN. Although the majority of CNVs discovered were individually rare, we found the frequency of CNVs to be collectively high. We identified a total of 11?070 CNVs greater than 10?kb passing quality control criteria that were called by both algorithms - leading to an average of 24.8 CNVs per person covering 2214?kb (median). We identified 1541 unique copy-number variable regions, 309 of which did not overlap with the Database of Genomic Variants. These results provide further insight into the distribution of CNV in African Americans.