Characterization of the Candida glabrata Transcription Factor CgMar1: Role in Azole Susceptibility.
Ontology highlight
ABSTRACT: The prevalence of antifungal resistance in Candida glabrata, especially against azole drugs, results in difficult-to-treat and potentially life-threatening infections. Understanding the molecular basis of azole resistance in C. glabrata is crucial to designing more suitable therapeutic strategies. In this study, the role of the transcription factor encoded by ORF CAGL0B03421g, here denominated as CgMar1 (Multiple Azole Resistance 1), in azole susceptibility was explored. Using RNA-sequencing, CgMar1 was found to regulate 337 genes under fluconazole stress, including several related to lipid biosynthesis pathways. In this context, CgMar1 and its target CgRSB1, encoding a predicted sphingoid long-chain base efflux transporter, were found to contribute to plasma membrane sphingolipid incorporation and membrane permeability, decreasing fluconazole accumulation. CgMar1 was found to associate with the promoter of CgRSB1, which contains two instances of the CCCCTCC consensus, found to be required for CgRSB1 activation during fluconazole stress. Altogether, a regulatory pathway modulating azole susceptibility in C. glabrata is proposed, resulting from what appears to be a neofunctionalization of a Hap1-like transcription factor.
SUBMITTER: Pais P
PROVIDER: S-EPMC8779156 | biostudies-literature |
REPOSITORIES: biostudies-literature
ACCESS DATA