Project description:The successive emergences and accelerating spread of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) lineages and evolved resistance to some ongoing clinical therapeutics increase the risks associated with the coronavirus disease 2019 (COVID-19) pandemic. An urgent intervention for broadly effective therapies to limit the morbidity and mortality of COVID-19 and future transmission events from SARS-related coronaviruses (SARSr-CoVs) is needed. Here, we isolate and humanize an angiotensin-converting enzyme-2 (ACE2)-blocking monoclonal antibody (MAb), named h11B11, which exhibits potent inhibitory activity against SARS-CoV and circulating global SARS-CoV-2 lineages. When administered therapeutically or prophylactically in the hACE2 mouse model, h11B11 alleviates and prevents SARS-CoV-2 replication and virus-induced pathological syndromes. No significant changes in blood pressure and hematology chemistry toxicology were observed after injections of multiple high dosages of h11B11 in cynomolgus monkeys. Analysis of the structures of the h11B11/ACE2 and receptor-binding domain (RBD)/ACE2 complexes shows hindrance and epitope competition of the MAb and RBD for the receptor. Together, these results suggest h11B11 as a potential therapeutic countermeasure against SARS-CoV, SARS-CoV-2, and escape variants.
Project description:The global spread of SARS-CoV-2 and its variants poses a serious threat to human health worldwide. Recently, the emergence of Omicron has presented a new challenge to the prevention and control of the COVID-19 pandemic. A convenient and reliable in vitro neutralization assay is an important method for validating the efficiency of antibodies, vaccines, and other potential drugs. Here, we established an effective assay based on a pseudovirus carrying a full-length spike (S) protein of SARS-CoV-2 variants in the HIV-1 backbone, with a luciferase reporter gene inserted into the non-replicate pseudovirus genome. The key parameters for packaging the pseudovirus were optimized, including the ratio of the S protein expression plasmids to the HIV backbone plasmids and the collection time for the Alpha, Beta, Gamma, Kappa, and Omicron pseudovirus particles. The pseudovirus neutralization assay was validated using several approved or developed monoclonal antibodies, underscoring that Omicron can escape some neutralizing antibodies, such as REGN10987 and REGN10933, while S309 and ADG-2 still function with reduced neutralization capability. The neutralizing capacity of convalescent plasma from COVID-19 convalescent patients in Wuhan was tested against these pseudoviruses, revealing the immune evasion of Omicron. Our work established a practical pseudovirus-based neutralization assay for SARS-CoV-2 variants, which can be conducted safely under biosafety level-2 (BSL-2) conditions, and this assay will be a promising tool for studying and characterizing vaccines and therapeutic candidates against Omicron-included SARS-CoV-2 variants.
Project description:Various vaccines have been developed to control the COVID-19 pandemic, but the available vaccines were developed using ancestral SARS-CoV-2 wild-type (WT) strains. Commercial anti-SARS-CoV-2 receptor binding domain (RBD) antibody assays have been established and employed for validation of vaccine efficacy. However, these assays were developed before the SARS-CoV-2 variants of concern (VOCs) emerged. It is unclear whether anti-RBD IgG levels can predict immunity against VOCs. In this study, we determined the correlations between the levels of anti-RBD IgG and neutralizing antibodies (NAbs) against SARS-CoV-2 variants in vaccinated subjects. After vaccination, 100% of subjects showed an anti-RBD IgG response, whereas 82, 79, 30, 75, and 2% showed NAb responses against WT, Alpha, Beta, Delta, and Omicron variants, respectively. A high correlation was observed between anti-RBD IgG and NAbs against WT, Alpha, Beta, and Delta, but not so for the Omicron NAbs. Among subjects with high levels of anti-RBD IgG, 93, 93, 71, 93, and 0% of them had NAbs against WT, Alpha, Beta, Delta, and Omicron variants, respectively. These results indicate that anti-RBD IgG levels cannot be used as a predictor for the presence of NAbs against the globally dominant SARS-CoV-2 Omicron variant.
Project description:Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still rapidly spreading worldwide. Many drugs and vaccines have been approved for clinical use show efficacy in the treatment and prevention of SARS-CoV-2 infections. However, the emergence of SARS-CoV-2 variants of concern (VOCs), such as Delta (B.1.617.2) and the recently emerged Omicron (B.1.1.529), has seriously challenged the application of current therapeutics. Therefore, there is still a pressing need for identification of new broad-spectrum antivirals. Here, we further characterized a human antibody (58G6), which we previously isolated from a patient, with a broadly authentic virus-neutralizing activity that inhibits the Delta and Omicron variants with half-maximal inhibitory concentrations (IC50) of 1.69 ng/ml and 54.31 ng/ml, respectively. 58G6 shows prophylactic and therapeutic efficacy in hamsters challenged with the Delta and Omicron variants through nasal delivery. Notably, a very low dosage (2 mg/kg daily) of 58G6 efficiently prevented Omicron variant replication in the lungs. These advantages may overcome the efficacy limitation of currently approved neutralizing antibodies that can be administered only by intravenous injection. In general, 58G6 is a promising prophylactic and therapeutic candidate against current circulating VOCs and even future emerging mutants. To the best of our knowledge, 58G6 is one of the most potent neutralizing antibodies against Omicron, with a broader spectrum than those approved for clinical use. 58G6 could be developed as a nebulized therapy, which would be more cost effective and user friendly and enhance the clinical outcome compared to that obtained with direct nasal delivery.
Project description:BackgroundWith the continuous emergence of new SARS-CoV-2 variants that feature increased transmission and immune escape, there is an urgent demand for a better vaccine design that will provide broader neutralizing efficacy.MethodsWe report an mRNA-based vaccine using an engineered "hybrid" receptor binding domain (RBD) that contains all 16 point-mutations shown in the currently prevailing Omicron and Delta variants.ResultsA booster dose of hybrid vaccine in mice previously immunized with wild-type RBD vaccine induced high titers of broadly neutralizing antibodies against all tested SARS-CoV-2 variants of concern (VOCs). In naïve mice, hybrid vaccine generated strong Omicron-specific neutralizing antibodies as well as low but significant titers against other VOCs. Hybrid vaccine also elicited CD8+/IFN-γ+ T cell responses against a conserved T cell epitope present in wild type and all VOCs.ConclusionsThese results demonstrate that inclusion of different antigenic mutations from various SARS-CoV-2 variants is a feasible approach to develop cross-protective vaccines.
Project description:Striking number of mutations found in the spike protein of recently emerged SARS-CoV-2 Omicron subvariants BA.1, BA.2, BA.3 and BA.4/5 has raised serious concerns regarding the escape from current antibody therapies and vaccine protection. Here, we conducted comprehensive analysis on the extent of two major Omicron lineages BA.1/BA.1.1 and BA.2 to escape neutralization from the therapeutic antibodies approved by the regulatory authorities and convalescent plasma from SARS-CoV-2 patients infected during initial wave of pandemic in early 2020. We showed that Omicron BA.1/BA.1.1 were the most resistant in both magnitude and breadth against antibodies and convalescent plasma, followed by Beta, BA.2, Gamma, Delta and Alpha. While the majority of therapeutic antibodies lost binding and neutralization to Omicron variants, BRII combo (BRII-196 + BRII-198), S309, and AZ combo (COV2-2196 + COV2-2130) maintained neutralization despite of reduction due to either conserved epitope or combinational effect between the two designated antibodies. A single intraperitoneal injection of BRII combo as a prophylactic treatment protected animals from Omicron infection. Treated animals manifested normal body weight, survived infection up to 14 days, undetectable levels of infectious viruses in the lungs, and reduced lung pathology compared to the controls. Analyzing ACE2 from diverse host species showed that Omicron variants acquired ability to use mouse ACE2 for entry. These results demonstrate major antigenic shifts and potentially broadening the host range of two major Omicron lineages BA.1/BA.1.1 and BA.2, posing serious challenges to current antibody therapies and vaccine protection as well as increasing danger of spillover into the wildlife.
Project description:In view of the rapid development of the COVID-19 pandemic and SARS-CoV-2 mutation, we characterized the emerging SARS-CoV-2 variants of concern (VOCs) by both bioinformatics methods and experiments. The representative genomic sequences of SARS-CoV-2 VOCs were first downloaded from NCBI, including the prototypic strain, Alpha (B.1.1.7) strain, Beta (B.1.351) strain, Delta (B.1.617.2), and Omicron (B1.1.529) strain. Bioinformatics analysis revealed that the D614G mutation led to formation of a protruding spike (S) in the tertiary structure of spike protein, which could be responsible for the enhanced binding to angiotensin-converting enzyme 2 (ACE2) receptor. The epitope analysis further showed that the S protein antigenicity of the Omicron variant changed dramatically, which was possibly associated with its enhanced ability of immune escape. To verify the bioinformatics results, we performed experiments of pseudovirus infection and protein affinity assay. Notably, we found that the spike protein of Omicron variant showed the weakest infectivity and binding ability among all tested strains. Finally, we also proved this through virus infection experiments, and found that the cytotoxicity of Omicron seems to be not strong enough. The results in this study provide guidelines for prevention and control of COVID-19.
Project description:The strikingly high transmissibility and antibody evasion of SARS-CoV-2 Omicron variants have posed great challenges to the efficacy of current vaccines and antibody immunotherapy. Here, we screen 34 BNT162b2-vaccinees and isolate a public broadly neutralizing antibody ZCB11 derived from the IGHV1-58 family. ZCB11 targets viral receptor-binding domain specifically and neutralizes all SARS-CoV-2 variants of concern, especially with great potency against authentic Omicron and Delta variants. Pseudovirus-based mapping of 57 naturally occurred spike mutations or deletions reveals that S371L results in 11-fold neutralization resistance, but it is rescued by compensating mutations in Omicron variants. Cryo-EM analysis demonstrates that ZCB11 heavy chain predominantly interacts with Omicron spike trimer with receptor-binding domain in up conformation blocking ACE2 binding. In addition, prophylactic or therapeutic ZCB11 administration protects lung infection against Omicron viral challenge in golden Syrian hamsters. These results suggest that vaccine-induced ZCB11 is a promising broadly neutralizing antibody for biomedical interventions against pandemic SARS-CoV-2.